cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334074 a(n) is the numerator of the sum of reciprocals of primes not exceeding n and not dividing binomial(2*n, n).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 12, 1, 10, 71, 16, 103, 215, 311, 311, 311, 431, 30, 791, 36, 575, 8586, 222349, 222349, 182169, 144961, 747338, 8630, 1343, 89513, 2904968, 520321, 45746, 1005129, 350073, 1890784, 72480703, 34997904, 257894479, 257894479, 1755387611, 1755387611
Offset: 1

Views

Author

Amiram Eldar, Apr 13 2020

Keywords

Comments

Erdős et al. (1975) could not decide if the fraction f(n) = a(n)/A334075(n) is bounded. They found its asymptotic mean (see formula).

Examples

			For n = 7, binomial(2*7, 7) = 3432 = 2^3 * 3 * 11 * 13, and there are 2 primes p <= 7 which are not divisors of 3432: 5 and 7. Therefore, a(7) = numerator(1/5 + 1/7) = numerator(12/35) = 12.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B33.

Crossrefs

Cf. A000984, A114124, A334075 (denominators).

Programs

  • Mathematica
    a[n_] := Numerator[Plus @@ (1/Select[Range[n],PrimeQ[#] && !Divisible[Binomial[2n, n],#] &])]; Array[a, 50]
  • PARI
    a(n) = {my(s=0, b=binomial(2*n,n)); forprime(p=2, n, if (b % p, s += 1/p)); numerator(s);} \\ Michel Marcus, Apr 14 2020
    
  • Python
    from fractions import Fraction
    from sympy import binomial, isprime
    def A334074(n):
        b = binomial(2*n,n)
        return sum(Fraction(1,p) for p in range(2,n+1) if b % p != 0 and isprime(p)).numerator # Chai Wah Wu, Apr 14 2020

Formula

a(n) = numerator(Sum_{p prime <= n, binomial(2*n, n) (mod p) > 0} 1/p).
Limit_{k -> infinity} (1/k) Sum_{i=1..k} a(i)/A334075(i) = Sum_{k>=2} log(k)/2^k (A114124).
Limit_{k -> infinity} (1/k) Sum_{i=1..k} (a(i)/A334075(i))^2 = (Sum_{k>=2} log(k)/2^k)^2.