A334074 a(n) is the numerator of the sum of reciprocals of primes not exceeding n and not dividing binomial(2*n, n).
0, 0, 1, 1, 1, 1, 12, 1, 10, 71, 16, 103, 215, 311, 311, 311, 431, 30, 791, 36, 575, 8586, 222349, 222349, 182169, 144961, 747338, 8630, 1343, 89513, 2904968, 520321, 45746, 1005129, 350073, 1890784, 72480703, 34997904, 257894479, 257894479, 1755387611, 1755387611
Offset: 1
Examples
For n = 7, binomial(2*7, 7) = 3432 = 2^3 * 3 * 11 * 13, and there are 2 primes p <= 7 which are not divisors of 3432: 5 and 7. Therefore, a(7) = numerator(1/5 + 1/7) = numerator(12/35) = 12.
References
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B33.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..3844
- Paul Erdős, Ronald L. Graham, Imre Z. Ruzsa and Ernst G. Straus, On the prime factors of C(2*n, n), Mathematics of Computation, Vol. 29, No. 129 (1975), pp. 83-92.
Programs
-
Mathematica
a[n_] := Numerator[Plus @@ (1/Select[Range[n],PrimeQ[#] && !Divisible[Binomial[2n, n],#] &])]; Array[a, 50]
-
PARI
a(n) = {my(s=0, b=binomial(2*n,n)); forprime(p=2, n, if (b % p, s += 1/p)); numerator(s);} \\ Michel Marcus, Apr 14 2020
-
Python
from fractions import Fraction from sympy import binomial, isprime def A334074(n): b = binomial(2*n,n) return sum(Fraction(1,p) for p in range(2,n+1) if b % p != 0 and isprime(p)).numerator # Chai Wah Wu, Apr 14 2020
Comments