cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A114124 Decimal expansion of logarithm of A112302.

Original entry on oeis.org

5, 0, 7, 8, 3, 3, 9, 2, 2, 8, 6, 8, 4, 3, 8, 3, 9, 2, 1, 8, 9, 0, 4, 1, 8, 4, 0, 7, 2, 2, 0, 7, 6, 3, 7, 4, 2, 4, 6, 2, 1, 8, 4, 3, 3, 4, 3, 2, 6, 0, 0, 9, 2, 9, 5, 3, 6, 6, 3, 9, 2, 7, 5, 0, 3, 5, 1, 5, 2, 2, 5, 8, 0, 8, 9, 7, 1, 0, 8, 6, 1, 8, 3, 6, 9, 0, 1, 5, 3, 8, 5, 5, 3, 5, 4, 4, 0, 7, 5, 4, 1, 8, 8, 8, 3
Offset: 0

Views

Author

Eric W. Weisstein, Feb 08 2006

Keywords

Examples

			0.5078339228684383921890418407220763742462184334326009...
		

Crossrefs

Programs

Formula

Equals Sum_{n>=2} log(n)/2^n. - Jean-François Alcover, Apr 14 2014
Equals lim_{k->oo} (1/k) Sum_{i=1..k} A334074(i)/A334075(i). - Amiram Eldar, Apr 14 2020
Equals Sum_{n>=1} Lambda(n)/(2^n-1), where Lambda(n) = log(A014963(n)) is the Mangoldt function. - Amiram Eldar, Jul 07 2021
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} f(k), where f(k) = Sum_{primes p <= k, binomial(2*k,k) mod p != 0} 1/p = A334074(k)/A334075(k) (Erdős et al., 1975). - Amiram Eldar, May 25 2025

A334075 a(n) is the denominator of the sum of reciprocals of primes not exceeding n and not dividing binomial(2*n, n).

Original entry on oeis.org

1, 1, 3, 3, 5, 5, 35, 7, 21, 105, 55, 165, 429, 1001, 1001, 1001, 1547, 221, 4199, 323, 2261, 24871, 572033, 572033, 408595, 312455, 937365, 17043, 8671, 130065, 4032015, 1344005, 227447, 3866599, 840565, 2521695, 93302715, 118183439, 419014011, 419014011, 5726524817
Offset: 1

Views

Author

Amiram Eldar, Apr 13 2020

Keywords

Examples

			For n = 7, binomial(2*7, 7) = 3432 = 2^3 * 3 * 11 * 13, and there are 2 primes p <= 7 which are not divisors of 3432: 5 and 7. Therefore, a(7) = denominator(1/5 + 1/7) = denominator(12/35) = 35.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B33.

Crossrefs

Cf. A000984, A334074 (numerators).

Programs

  • Mathematica
    a[n_] := Denominator[Plus @@ (1/Select[Range[n],PrimeQ[#] && !Divisible[Binomial[2n, n],#] &])]; Array[a, 50]
  • PARI
    a(n) = {my(s=0, b=binomial(2*n,n)); forprime(p=2, n, if (b % p, s += 1/p)); denominator(s);} \\ Michel Marcus, Apr 14 2020
    
  • Python
    from fractions import Fraction
    from sympy import binomial, isprime
    def A334075(n):
        b = binomial(2*n,n)
        return sum(Fraction(1,p) for p in range(2,n+1) if b % p != 0 and isprime(p)).denominator # Chai Wah Wu, Apr 14 2020

Formula

a(n) = denominator(Sum_{p prime <= n, binomial(2*n, n) (mod p) > 0} 1/p).
Showing 1-2 of 2 results.