cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A112302 Decimal expansion of quadratic recurrence constant sqrt(1 * sqrt(2 * sqrt(3 * sqrt(4 * ...)))).

Original entry on oeis.org

1, 6, 6, 1, 6, 8, 7, 9, 4, 9, 6, 3, 3, 5, 9, 4, 1, 2, 1, 2, 9, 5, 8, 1, 8, 9, 2, 2, 7, 4, 9, 9, 5, 0, 7, 4, 9, 9, 6, 4, 4, 1, 8, 6, 3, 5, 0, 2, 5, 0, 6, 8, 2, 0, 8, 1, 8, 9, 7, 1, 1, 1, 6, 8, 0, 2, 5, 6, 0, 9, 0, 2, 9, 8, 2, 6, 3, 8, 3, 7, 2, 7, 9, 0, 8, 3, 6, 9, 1, 7, 6, 4, 1, 1, 4, 6, 1, 1, 6, 7, 1, 5, 5, 2, 8
Offset: 1

Views

Author

Michael Somos, Sep 02 2005

Keywords

Comments

From Johannes W. Meijer, Jun 27 2016: (Start)
With Phi(z, p, q) the Lerch transcendent, define LP(n) = (1/n) * sum(Phi(1/2, n-k, 1) * LP(k), k=0..n-1), with LP(0) = 1. Conjecture: Lim_{n -> infinity} LP(n) = A112302.
For similar formulas, see A090998 and A135002. For background information, see A274181.
The structure of the n! * LP(n) formulas leads to the multinomial coefficients A036039. (End)

Examples

			1.6616879496335941212958189227499507499644186350250682081897111680...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.
  • S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., AMS Chelsea 2000. See Appendix I. p. 348.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Fold[ N[ Sqrt[ #2*#1], 128] &, Sqrt@ 351, Reverse@ Range@ 350], 10, 111][[1]] (* Robert G. Wilson v, Nov 05 2010 *)
    Exp[-Derivative[1, 0][PolyLog][0, 1/2]] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Apr 07 2014, after Jonathan Sondow *)
  • PARI
    {a(n) = if( n<-1, 0, n++; default( realprecision, n+2); floor( prodinf( k=1, k^2^-k)* 10^n) % 10)};
    
  • PARI
    prodinf(n=1,n^2^-n) \\ Charles R Greathouse IV, Apr 07 2013
    
  • Python
    from mpmath import polylog, diff, exp, mp
    mp.dps = 120
    somos_const = exp(-diff(lambda n: polylog(n, 1/2), 0))
    A112302 = [int(d) for d in mp.nstr(somos_const, n=mp.dps)[:-1] if d != '.']  # Jwalin Bhatt, Nov 23 2024

Formula

Equals Product_{n>=1} n^(1/2^n). - Jonathan Sondow, Apr 07 2013
Equals exp(A114124) = A188834/2 = sqrt(A259235). - Hugo Pfoertner, Nov 23 2024
From Jwalin Bhatt, Apr 02 2025: (Start)
Equals exp(-PolyLog'(0,1/2)), where PolyLog'(x,y) represents the derivative of the polylogarithm w.r.t. x.
Equals Product_{n>=1} (1+1/n)^(1/2^n).
Equals exp(Sum_{n>=2} log(n)/2^n).
Equals 2*exp(Sum_{n>=1} (log(1+1/n)-1/n)/2^n). (End)

A259235 Decimal expansion of sqrt(2*sqrt(3*sqrt(4*...))), a variant of Somos's quadratic recurrence constant.

Original entry on oeis.org

2, 7, 6, 1, 2, 0, 6, 8, 4, 1, 9, 5, 7, 4, 9, 8, 0, 3, 3, 2, 3, 0, 4, 5, 4, 6, 4, 6, 5, 8, 0, 1, 3, 1, 1, 0, 4, 8, 7, 6, 1, 2, 5, 9, 8, 0, 7, 1, 5, 3, 0, 4, 8, 5, 0, 9, 5, 0, 7, 4, 5, 9, 6, 1, 3, 7, 5, 5, 9, 5, 5, 9, 1, 9, 4, 3, 9, 2, 7, 1, 5, 8, 3, 4, 8, 0, 1, 7, 2, 6, 6, 3, 0, 8, 9, 8, 9, 4, 4, 3, 4, 1
Offset: 1

Views

Author

Jean-François Alcover, Jun 22 2015

Keywords

Examples

			2.7612068419574980332304546465801311048761259807153...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Exp(2*(&+[(1/2)^n*Log(n): n in [2..2000]])); // G. C. Greubel, Sep 30 2018
  • Mathematica
    RealDigits[Exp[-2*Derivative[1, 0][PolyLog][0, 1/2]], 10, 102] // First
    RealDigits[Exp[2*Sum[(1/2)^n*Log[n], {n, 2, 2000}]], 10, 100][[1]] (* G. C. Greubel, Sep 30 2018 *)
  • PARI
    exp(sumpos(n=1,log(n+1)/2^n)) \\ Charles R Greathouse IV, Apr 18 2016
    

Formula

Equals A112302^2.
Equals exp( Sum_{n>=1} log(n)/2^(n-1) ).
Also equals exp(-2*PolyLog'(0,1/2)), where PolyLog' is the derivative of PolyLog(n,x) w.r.t. n.

A334074 a(n) is the numerator of the sum of reciprocals of primes not exceeding n and not dividing binomial(2*n, n).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 12, 1, 10, 71, 16, 103, 215, 311, 311, 311, 431, 30, 791, 36, 575, 8586, 222349, 222349, 182169, 144961, 747338, 8630, 1343, 89513, 2904968, 520321, 45746, 1005129, 350073, 1890784, 72480703, 34997904, 257894479, 257894479, 1755387611, 1755387611
Offset: 1

Views

Author

Amiram Eldar, Apr 13 2020

Keywords

Comments

Erdős et al. (1975) could not decide if the fraction f(n) = a(n)/A334075(n) is bounded. They found its asymptotic mean (see formula).

Examples

			For n = 7, binomial(2*7, 7) = 3432 = 2^3 * 3 * 11 * 13, and there are 2 primes p <= 7 which are not divisors of 3432: 5 and 7. Therefore, a(7) = numerator(1/5 + 1/7) = numerator(12/35) = 12.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B33.

Crossrefs

Cf. A000984, A114124, A334075 (denominators).

Programs

  • Mathematica
    a[n_] := Numerator[Plus @@ (1/Select[Range[n],PrimeQ[#] && !Divisible[Binomial[2n, n],#] &])]; Array[a, 50]
  • PARI
    a(n) = {my(s=0, b=binomial(2*n,n)); forprime(p=2, n, if (b % p, s += 1/p)); numerator(s);} \\ Michel Marcus, Apr 14 2020
    
  • Python
    from fractions import Fraction
    from sympy import binomial, isprime
    def A334074(n):
        b = binomial(2*n,n)
        return sum(Fraction(1,p) for p in range(2,n+1) if b % p != 0 and isprime(p)).numerator # Chai Wah Wu, Apr 14 2020

Formula

a(n) = numerator(Sum_{p prime <= n, binomial(2*n, n) (mod p) > 0} 1/p).
Limit_{k -> infinity} (1/k) Sum_{i=1..k} a(i)/A334075(i) = Sum_{k>=2} log(k)/2^k (A114124).
Limit_{k -> infinity} (1/k) Sum_{i=1..k} (a(i)/A334075(i))^2 = (Sum_{k>=2} log(k)/2^k)^2.
Showing 1-3 of 3 results.