cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334076 a(n) = bitwise NOR of n and 2n.

Original entry on oeis.org

0, 0, 1, 0, 3, 0, 1, 0, 7, 4, 1, 0, 3, 0, 1, 0, 15, 12, 9, 8, 3, 0, 1, 0, 7, 4, 1, 0, 3, 0, 1, 0, 31, 28, 25, 24, 19, 16, 17, 16, 7, 4, 1, 0, 3, 0, 1, 0, 15, 12, 9, 8, 3, 0, 1, 0, 7, 4, 1, 0, 3, 0, 1, 0, 63, 60, 57, 56, 51, 48, 49, 48, 39, 36, 33, 32, 35, 32, 33
Offset: 0

Views

Author

Alois P. Heinz, Apr 13 2020

Keywords

Comments

Exactly all bits that are 0 in both parameters (but not a leading 0 of both) are set to 1 in the output of bitwise NOR.

Crossrefs

Programs

  • Maple
    a:= n-> Bits[Nor](n, 2*n):
    seq(a(n), n=0..127);
  • PARI
    a(n) = my(x=bitor(n, 2*n)); bitneg(x, #binary(x)); \\ Michel Marcus, Apr 14 2020
  • Python
    def A334076(n):
        m = n|(2*n)
        return 0 if n == 0 else 2**(len(bin(m))-2)-1-m # Chai Wah Wu, Apr 14 2020
    

Formula

a(n) = 0 <=> n in { A247648 } union { 0 }.
a(n) = n-1 <=> n in { A000079 }.
a(n) = n/2 <=> n in { A125835 }.
a(n) = n*3/4 <=> n in { A141032 }.