cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A334098 a(n) = A334097(n) - A331410(n), where former is the exponent of the eventual power of 2 reached, and the latter is the number of iterations needed to get there, when starting from n and using the map k -> k + k/p, where p can be any odd prime factor of k, for example, the largest.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 3, 3, 3, 4, 2, 3, 3, 4, 2, 3, 4, 5, 3, 3, 3, 4, 2, 3, 3, 4, 3, 4, 3, 4, 3, 4, 4, 5, 4, 3, 3, 4, 3, 4, 3, 5, 3, 3, 3, 4, 4, 5, 4, 6, 3, 4, 3, 4, 4, 4, 4, 5, 2, 3, 3, 4, 4, 4, 4, 5, 4, 4, 4, 5, 3, 4, 3, 5, 3, 4, 4, 5, 5, 5, 3, 6, 4, 5, 4, 4, 3, 4, 4, 5, 4
Offset: 1

Views

Author

Antti Karttunen, Apr 29 2020

Keywords

Comments

Question: Are there any negative terms?

Crossrefs

Programs

  • Mathematica
    Array[Log2@ Last[#] - (Length[#] - 1) &@ NestWhileList[# + #/FactorInteger[#][[-1, 1]] &, #, ! IntegerQ@ Log2@ # &] &, 105] (* Michael De Vlieger, Apr 30 2020 *)
  • PARI
    A334098(n) = { my(k=0); while(bitand(n,n-1), k++; my(f=factor(n)[, 1]); n += (n/f[2-(n%2)])); (valuation(n,2)-k); };

Formula

a(n) = A334097(n) - A331410(n).
Totally additive sequence: a(m*n) = a(m)+a(n), for all m, n.

A334862 a(n) = A334097(n) - A064415(n).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 2, 0, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 0, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 3, 1, 1, 1, 2, 2, 2, 1, 2, 3, 2, 1, 3, 2, 2, 2, 1, 1, 3, 0, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 3, 2, 1, 2, 1, 3, 1, 1, 2, 3, 2, 2, 2, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, May 14 2020

Keywords

Comments

Completely additive because A064415 and A334097 are.

Crossrefs

Cf. A000079 (positions of zeros), A000244, A064415, A334097, A334861.

Programs

  • PARI
    A064415(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],f[k,2],f[k,2]*A064415(f[k,1]-1))); };
    A334097(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],f[k,2],f[k,2]*A334097(f[k,1]+1))); };
    A334862(n) = (A334097(n)-A064415(n));
    \\ Or alternatively as:
    A334862(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(A334097(f[k,1]+1)-A064415(f[k,1]-1)))); };

Formula

a(2) = 0, a(p) = A334097(p+1)-A064415(p-1) for odd primes p, a(m*n) = a(m)+a(n), if m,n > 1.
a(n) = A334097(n) - A064415(n).
a(3^k) = k for all k>= 0.

A331410 a(n) is the number of iterations needed to reach a power of 2 starting at n and using the map k -> k + k/p, where p is the largest prime factor of k.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 1, 0, 2, 2, 2, 1, 2, 1, 3, 0, 3, 2, 3, 2, 2, 2, 2, 1, 4, 2, 3, 1, 4, 3, 1, 0, 3, 3, 3, 2, 4, 3, 3, 2, 3, 2, 3, 2, 4, 2, 2, 1, 2, 4, 4, 2, 4, 3, 4, 1, 4, 4, 4, 3, 2, 1, 3, 0, 4, 3, 4, 3, 3, 3, 3, 2, 5, 4, 5, 3, 3, 3, 3, 2, 4, 3, 3, 2, 5, 3, 5, 2, 5, 4, 3, 2, 2, 2, 5, 1, 3, 2, 4, 4, 5, 4, 3, 2, 4
Offset: 1

Views

Author

Ali Sada, Jan 16 2020

Keywords

Comments

Let f(n) = A000265(n) be the odd part of n. Let p be the largest prime factor of k, and say k = p * m. Suppose that k is not a power of 2, i.e., p > 2, then f(k) = p * f(m). The iteration is k -> k + k/p = p*m + m = (p+1) * m. So, p * f(m) -> f(p+1) * f(m). Since for p > 2, f(p+1) < p, the odd part in each iteration decreases, until it becomes 1, i.e., until we reach a power of 2. - Amiram Eldar, Feb 19 2020
Any odd prime factor of k can be used at any step of the iteration, and the result will be same. Thus, like A329697, this is also fully additive sequence. - Antti Karttunen, Apr 29 2020
If and only if a(n) is equal to A005087(n), then sigma(2n) - sigma(n) is a power of 2. (See A336923, A046528). - Antti Karttunen, Mar 16 2021

Examples

			The trajectory of 15 is [15,18,24,32], taking 3 iterations to reach 32. So, a(15) = 3.
		

Crossrefs

Cf. A000265, A005087, A006530 (greatest prime factor), A052126, A078701, A087436, A329662 (positions of records and the first occurrences of each n), A334097, A334098, A334108, A334861, A336467, A336921, A336922, A336923 (A046528).
Cf. array A335430, and its rows A335431, A335882, and also A335874.
Cf. also A329697 (analogous sequence when using the map k -> k - k/p), A335878.
Cf. also A330437, A335884, A335885, A336362, A336363 for other similar iterations.

Programs

  • Magma
    f:=func; g:=func; a:=[]; for n in [1..1000] do k:=n; s:=0; while not g(k) do  s:=s+1; k:=f(k); end while; Append(~a,s); end for; a; // Marius A. Burtea, Jan 19 2020
    
  • Mathematica
    a[n_] := -1 + Length @ NestWhileList[# + #/FactorInteger[#][[-1, 1]] &, n, # / 2^IntegerExponent[#, 2] != 1 &]; Array[a, 100] (* Amiram Eldar, Jan 16 2020 *)
  • PARI
    A331410(n) = if(!bitand(n,n-1),0,1+A331410(n+(n/vecmax(factor(n)[, 1])))); \\ Antti Karttunen, Apr 29 2020
    
  • PARI
    A331410(n) = { my(k=0); while(bitand(n,n-1), k++; my(f=factor(n)[, 1]); n += (n/f[2-(n%2)])); (k); }; \\ Antti Karttunen, Apr 29 2020
    
  • PARI
    A331410(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(1+f[k,1])))); }; \\ Antti Karttunen, Apr 30 2020

Formula

From Antti Karttunen, Apr 29 2020: (Start)
This is a completely additive sequence: a(2) = 0, a(p) = 1+a(p+1) for odd primes p, a(m*n) = a(m)+a(n), if m,n > 1.
a(2n) = a(A000265(n)) = a(n).
If A209229(n) == 1, a(n) = 0, otherwise a(n) = 1 + a(n+A052126(n)), or equally, 1 + a(n+(n/A078701(n))).
a(n) = A334097(n) - A334098(n).
a(A122111(n)) = A334108(n).
(End)
a(n) = A334861(n) - A329697(n). - Antti Karttunen, May 14 2020
a(n) = a(A336467(n)) + A087436(n) = A336921(n) + A087436(n). - Antti Karttunen, Mar 16 2021

Extensions

Data section extended up to a(105) by Antti Karttunen, Apr 29 2020

A064415 a(1) = 0, a(n) = iter(n) if n is even, a(n) = iter(n)-1 if n is odd, where iter(n) = A003434(n) = smallest number of iterations of Euler totient function phi needed to reach 1.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 4, 5, 5, 5, 5, 5, 4, 6, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 4, 6, 6, 5, 6, 5, 5, 6, 6, 5, 5, 6, 5, 6, 5, 6, 6, 5, 5, 6, 6, 6, 6, 6, 5
Offset: 1

Views

Author

Christian WEINSBERG (cweinsbe(AT)fr.packardbell.org), Sep 30 2001

Keywords

Comments

a(n) is the exponent of the eventual power of 2 reached when starting from k=n and then iterating the nondeterministic map k -> k-(k/p), where p can be any odd prime factor of k, for example, the largest. Note that each original odd prime factor p of n brings its own share of 2's to the final result after it has been completely processed (with all intermediate odd primes also eliminated, leaving only 2's). As no 2's are removed, also all 2's already present in the original n are included in the eventual power of 2 that is reached, implying that a(n) >= A007814(n). - Antti Karttunen, May 13 2020

Crossrefs

The 2-adic valuation of A309243.
Partial sums of A334195. Cf. A053044 for partial sums of this sequence.
Cf. also A334097 (analogous sequence when using the map k -> k + k/p).

Programs

Formula

For all integers m >0 and n>0 a(m*n)=a(m)+a(n). The function a(n) is completely additive. The smallest integer q which satisfy the equation a(q)=n is 2^q, the greatest is 3^q. For all integers n>0, the counter image off n, a^-1(n) is finite.
a(1) = 0 and a(n) = A054725(n) for n>=2. - Joerg Arndt, Apr 08 2014, A-number corrected by Antti Karttunen, May 13 2020
From Antti Karttunen, May 13 2020: (Start)
For n > 1, a(n) = A003434(n) - A000035(n).
a(1) = 0, a(2) = 1 and for n > 2, a(n) = sum(p | n, a(p-1)), where sum is over all primes p that divide n, with multiplicity. (Cf. A054725).
a(1) = 0, a(2) = 1 and a(p) = 1 + a((p-1)/2) if p is an odd prime and a(n*m) = a(n) + a(m) if m,n > 1. [From above formula, 1+ compensates for the "lost" 2]
a(n) = A007814(A309243(n)). [From Rémy Sigrist's conjecture in the latter sequence. This reduces to a(n) = sum(p|n, a(p-1)) formula above, thus holds also]
If A209229(n) = 1 [when n is a power of 2], a(n) = A007814(n), otherwise a(n) = a(n-A052126(n)) = a(A171462(n)). [From the definition in the comments]
a(n) = A064097(n) - A329697(n).
a(2^k) = a(3^k) = k.
(End)

Extensions

More terms from David Wasserman, Jul 22 2002
Definition corrected by Reinhard Zumkeller, Sep 18 2011

A335876 a(1) = 2, and for n > 1, a(n) = n + (n/p), where p is largest prime dividing n, A006530(n).

Original entry on oeis.org

2, 3, 4, 6, 6, 8, 8, 12, 12, 12, 12, 16, 14, 16, 18, 24, 18, 24, 20, 24, 24, 24, 24, 32, 30, 28, 36, 32, 30, 36, 32, 48, 36, 36, 40, 48, 38, 40, 42, 48, 42, 48, 44, 48, 54, 48, 48, 64, 56, 60, 54, 56, 54, 72, 60, 64, 60, 60, 60, 72, 62, 64, 72, 96, 70, 72, 68, 72, 72, 80, 72, 96, 74, 76, 90, 80, 84, 84, 80, 96, 108, 84, 84
Offset: 1

Views

Author

Antti Karttunen, Jun 28 2020

Keywords

Crossrefs

Cf. A006530, A052126, A171462, A331410, A334097, A335431 (positions of two's powers > 2).

Programs

  • Mathematica
    Array[# (1 + 1/FactorInteger[#][[-1, 1]]) &, 83] (* Michael De Vlieger, Jul 08 2020 *)
  • PARI
    A335876(n) = if(1==n,2,n + (n/vecmax(factor(n)[, 1])));

Formula

a(n) = n + A052126(n).
Showing 1-5 of 5 results.