A334143 a(n) = bitwise NOR of prime(n) and prime(n+1).
0, 0, 0, 0, 0, 2, 12, 8, 0, 0, 0, 18, 20, 16, 0, 0, 0, 0, 56, 48, 48, 32, 36, 6, 26, 24, 16, 16, 2, 0, 0, 116, 116, 96, 104, 96, 64, 88, 80, 64, 72, 64, 0, 58, 56, 40, 32, 0, 24, 18, 16, 0, 4, 4, 248, 240, 240, 224, 226, 228, 192, 200, 200, 192, 194, 128, 164
Offset: 1
Examples
a(6) = prime(6) NOR prime(7) = 13 NOR 17 = 2.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Wikipedia, Bitwise operation
Programs
-
Maple
a:= n-> Bits[Nor](ithprime(n), ithprime(n+1)): seq(a(n), n=1..70); # Alois P. Heinz, Apr 15 2020
-
Mathematica
A334143[n_]:=With[{b=BitOr[Prime[n],Prime[n+1]]},2^BitLength[b]-b-1];Array[A334143,100] (* Paolo Xausa, Oct 13 2023 *)
-
PARI
a(n) = my(x=bitor(prime(n), prime(n+1))); bitneg(x, #binary(x)); \\ Michel Marcus, Apr 16 2020
-
Python
def NORprime(n): s = str(bin(primes[n]))[2:] t = str(bin(primes[n-1]))[2:] k = (len(s) - len(t)) t = k*'0' + t r = '' for i in range(len(s)): if s[i] == t[i] and s[i] == '0': r += '1' else: r += '0' return int(r,2)