A334157 Row sums of array A158777.
1, 2, 5, 16, 89, 686, 5917, 54860, 588401, 7370074, 103522421, 1573237832, 25869057865, 462768222086, 8965777751309, 186025937645956, 4106375449878497, 96241703493486770, 2390797380938894821, 62730027061416412544
Offset: 0
Keywords
Programs
-
Maple
W := proc(n, m) local v, s, h; v := 0; for s from 0 to m do if 0 = (m - s) mod 4 then h := (m - s)/4; v := v + binomial(n - s - 3*h, h)/s!; end if; end do; n!*v; end proc; seq(add(W(n1, m1), m1 = 0 .. n1), n1 = 0 .. 35);
-
Mathematica
Table[Apply[Plus, CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/( 1 - x/t - t^4*x^4), {x, 0, 50}], n]], t]], {n, 0, 40}]; (* Program due to Roger L. Bagula from A158777 *)
Formula
a(n) = n!*Sum_{k=0..n} A003269(k+1)/(n-k)!.
a(n) = n!*Sum_{k=0..n} Sum_{s=0..floor(k/3)} binomial(k-3*s, s)/(n-k)!.
E.g.f.: exp(x)/(1 - x - x^4).