A334247 Number of acyclic orientations of the edges of an n-dimensional cube.
1, 2, 14, 1862, 193270310, 47171704165698393638
Offset: 0
Examples
For n=2, there are 14 ways to orient the edges of a square without cycles (see links).
Links
- David Eppstein, 14 acyclic orientations of a square
- Eric Weisstein's World of Mathematics, Hypercube Graph
Crossrefs
Programs
-
Maple
with(GraphTheory): with(SpecialGraphs): a:= n-> abs(ChromaticPolynomial(HypercubeGraph(n), -1)): seq(a(n), n=0..4); # Alois P. Heinz, Jan 14 2025
Formula
a(n) = Sum_{k=1..2^n} (-1)^(2^n-k) * k! * A334159(n, k). - Andrew Howroyd, Apr 21 2020
a(n) = |Sum_{k=0..2^n} (-1)^k * A334278(n, k)|. - Peter Kagey, Oct 13 2020
Extensions
a(5) from Andrew Howroyd, Apr 23 2020
Comments