cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334277 Perimeters of almost-equilateral Heronian triangles.

Original entry on oeis.org

12, 42, 156, 582, 2172, 8106, 30252, 112902, 421356, 1572522, 5868732, 21902406, 81740892, 305061162, 1138503756, 4248953862, 15857311692, 59180292906, 220863859932, 824275146822, 3076236727356, 11480671762602, 42846450323052, 159905129529606, 596774067795372, 2227191141651882
Offset: 1

Views

Author

Wesley Ivan Hurt, May 20 2020

Keywords

Examples

			a(1) = 12; there is one Heronian triangle with perimeter 12 whose side lengths are consecutive integers, [3,4,5].
a(2) = 42; there is one Heronian triangle with perimeter 42 whose side lengths are consecutive integers, [13,14,15].
		

Crossrefs

Cf. A001075.
Cf. A011945 (areas), this sequence (perimeters).
Cf. A003500 (middle side lengths), A016064 (smallest side lengths), A335025 (largest side lengths).

Programs

  • Mathematica
    Table[Expand[3 ((2 + Sqrt[3])^n + (2 - Sqrt[3])^n)], {n, 40}]

Formula

a(n) = 3*A003500(n).
a(n) = 3 * ((2 + sqrt(3))^n + (2 - sqrt(3))^n).
From Alejandro J. Becerra Jr., Jan 29 2021: (Start)
G.f.: -6*x*(x - 2)/(x^2 - 4*x + 1).
a(n) = 4*a(n-1) - a(n-2). (End)
a(n) = 6 * A001075(n). - Joerg Arndt, Jan 29 2021
E.g.f.: 6*(exp(2*x)*cosh(sqrt(3)*x) - 1). - Stefano Spezia, Jan 29 2021