cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A003500 a(n) = 4*a(n-1) - a(n-2) with a(0) = 2, a(1) = 4.

Original entry on oeis.org

2, 4, 14, 52, 194, 724, 2702, 10084, 37634, 140452, 524174, 1956244, 7300802, 27246964, 101687054, 379501252, 1416317954, 5285770564, 19726764302, 73621286644, 274758382274, 1025412242452, 3826890587534, 14282150107684, 53301709843202, 198924689265124
Offset: 0

Views

Author

Keywords

Comments

a(n) gives values of x satisfying x^2 - 3*y^2 = 4; corresponding y values are given by 2*A001353(n).
If M is any given term of the sequence, then the next one is 2*M + sqrt(3*M^2 - 12). - Lekraj Beedassy, Feb 18 2002
For n > 0, the three numbers a(n) - 1, a(n), and a(n) + 1 form a Fleenor-Heronian triangle, i.e., a Heronian triangle with consecutive sides, whose area A(n) may be obtained from the relation [4*A(n)]^2 = 3([a(2n)]^2 - 4); or A(n) = 3*A001353(2*n)/2 and whose semiperimeter is 3*a[n]/2. The sequence is symmetrical about a[0], i.e., a[-n] = a[n].
For n > 0, a(n) + 2 is the number of dimer tilings of a 2*n X 2 Klein bottle (cf. A103999).
Tsumura shows that, for prime p, a(p) is composite (contrary to a conjecture of Juricevic). - Charles R Greathouse IV, Apr 13 2010
Except for the first term, positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 12 = 0. - Colin Barker, Feb 04 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 192 = 0. - Colin Barker, Feb 16 2014
A268281(n) - 1 is a member of this sequence iff A268281(n) is prime. - Frank M Jackson, Feb 27 2016
a(n) gives values of x satisfying 3*x^2 - 4*y^2 = 12; corresponding y values are given by A005320. - Sture Sjöstedt, Dec 19 2017
Middle side lengths of almost-equilateral Heronian triangles. - Wesley Ivan Hurt, May 20 2020
For all elements k of the sequence, 3*(k-2)*(k+2) is a square. - Davide Rotondo, Oct 25 2020

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 82.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p.91.
  • Michael P. Cohen, Generating Heronian Triangles With Consecutive Integer Sides. Journal of Recreational Mathematics, vol. 30 no. 2 1999-2000 p. 123.
  • L. E. Dickson, History of The Theory of Numbers, Vol. 2 pp. 197;198;200;201. Chelsea NY.
  • Charles R. Fleenor, Heronian Triangles with Consecutive Integer Sides, Journal of Recreational Mathematics, Volume 28, no. 2 (1996-7) 113-115.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
  • V. D. To, "Finding All Fleenor-Heronian Triangles", Journal of Recreational Mathematics vol. 32 no.4 2003-4 pp. 298-301 Baywood NY.

Crossrefs

Cf. A011945 (areas), A334277 (perimeters).
Cf. this sequence (middle side lengths), A016064 (smallest side lengths), A335025 (largest side lengths).

Programs

  • Haskell
    a003500 n = a003500_list !! n
    a003500_list = 2 : 4 : zipWith (-)
       (map (* 4) $ tail a003500_list) a003500_list
    -- Reinhard Zumkeller, Dec 17 2011
    
  • Magma
    I:=[2,4]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2018
  • Maple
    A003500 := proc(n) option remember; if n <= 1 then 2*n+2 else 4*procname(n-1)-procname(n-2); fi;
    end proc;
  • Mathematica
    a[0]=2; a[1]=4; a[n_]:= a[n]= 4a[n-1] -a[n-2]; Table[a[n], {n, 0, 23}]
    LinearRecurrence[{4,-1},{2,4},30] (* Harvey P. Dale, Aug 20 2011 *)
    Table[Round@LucasL[2n, Sqrt[2]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
  • PARI
    x='x+O('x^99); Vec(-2*(-1+2*x)/(1-4*x+x^2)) \\ Altug Alkan, Apr 04 2016
    
  • Sage
    [lucas_number2(n,4,1) for n in range(0, 24)] # Zerinvary Lajos, May 14 2009
    

Formula

a(n) = ( 2 + sqrt(3) )^n + ( 2 - sqrt(3) )^n.
a(n) = 2*A001075(n).
G.f.: 2*(1 - 2*x)/(1 - 4*x + x^2). Simon Plouffe in his 1992 dissertation.
a(n) = A001835(n) + A001835(n+1).
a(n) = trace of n-th power of the 2 X 2 matrix [1 2 / 1 3]. - Gary W. Adamson, Jun 30 2003 [corrected by Joerg Arndt, Jun 18 2020]
From the addition formula, a(n+m) = a(n)*a(m) - a(m-n), it is easy to derive multiplication formulas, such as: a(2*n) = (a(n))^2 - 2, a(3*n) = (a(n))^3 - 3*(a(n)), a(4*n) = (a(n))^4 - 4*(a(n))^2 + 2, a(5*n) = (a(n))^5 - 5*(a(n))^3 + 5*(a(n)), a(6*n) = (a(n))^6 - 6*(a(n))^4 + 9*(a(n))^2 - 2, etc. The absolute values of the coefficients in the expansions are given by the triangle A034807. - John Blythe Dobson, Nov 04 2007
a(n) = 2*A001353(n+1) - 4*A001353(n). - R. J. Mathar, Nov 16 2007
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n=0..infinity} (1 + x^(4*n + 1))/(1 + x^(4*n + 3)). Let alpha = 2 - sqrt(3). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.24561 99455 06551 88869 ... = 2 + 1/(4 + 1/(14 + 1/(52 + ...))). Cf. A174500.
Also F(-alpha) = 0.74544 81786 39692 68884 ... has the continued fraction representation 1 - 1/(4 - 1/(14 - 1/(52 - ...))) and the simple continued fraction expansion 1/(1 + 1/((4 - 2) + 1/(1 + 1/((14 - 2) + 1/(1 + 1/((52 - 2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((4^2 - 4) + 1/(1 + 1/((14^2 - 4) + 1/(1 + 1/((52^2 - 4) + 1/(1 + ...))))))).
(End)
a(2^n) = A003010(n). - John Blythe Dobson, Mar 10 2014
a(n) = [x^n] ( (1 + 4*x + sqrt(1 + 8*x + 12*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
E.g.f.: 2*exp(2*x)*cosh(sqrt(3)*x). - Ilya Gutkovskiy, Apr 27 2016
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n*(n - k - 1)!/(k!*(n - 2*k)!)*4^(n - 2*k) for n >= 1. - Peter Luschny, May 10 2016
From Peter Bala, Oct 15 2019: (Start)
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; -1, 4].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
2*Sum_{n >= 1} 1/( a(n) - 6/a(n) ) = 1.
6*Sum_{n >= 1} (-1)^(n+1)/( a(n) + 2/a(n) ) = 1.
8*Sum_{n >= 1} 1/( a(n) + 24/(a(n) - 12/(a(n))) ) = 1.
8*Sum_{n >= 1} (-1)^(n+1)/( a(n) + 8/(a(n) + 4/(a(n))) ) = 1.
Series acceleration formulas for sums of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/2 - 6*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 6)),
Sum_{n >= 1} 1/a(n) = 1/8 + 24*Sum_{n >= 1} 1/(a(n)*(a(n)^2 + 12)),
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/6 + 2*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 2)) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/8 + 8*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 12)).
Sum_{n >= 1} 1/a(n) = ( theta_3(2-sqrt(3))^2 - 1 )/4 = 0.34770 07561 66992 06261 .... See Borwein and Borwein, Proposition 3.5 (i), p.91.
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - theta_3(sqrt(3)-2)^2 )/4. Cf. A003499 and A153415. (End)
a(n) = tan(Pi/12)^n + tan(5*Pi/12)^n. - Greg Dresden, Oct 01 2020
From Wolfdieter Lang, Sep 06 2021: (Start)
a(n) = S(n, 4) - S(n-2, 4) = 2*T(n, 2), for n >= 0, with S and T Chebyshev polynomials, with S(-1, x) = 0 and S(-2, x) = -1. S(n, 4) = A001353(n+1), for n >= -1, and T(n, 2) = A001075(n).
a(2*k) = A067902(k), a(2*k+1) = 4*A001570(k+1), for k >= 0. (End)
a(n) = sqrt(2 + 2*A011943(n+1)) = sqrt(2 + 2*A102344(n+1)), n>0. - Ralf Steiner, Sep 23 2021
Sum_{n>=1} arctan(3/a(n)^2) = Pi/6 - arctan(1/3) = A019673 - A105531 (Ohtskua, 2024). - Amiram Eldar, Aug 29 2024

Extensions

More terms from James Sellers, May 03 2000
Additional comments from Lekraj Beedassy, Feb 14 2002

A016064 Smallest side lengths of almost-equilateral Heronian triangles (sides are consecutive positive integers, area is a nonnegative integer).

Original entry on oeis.org

1, 3, 13, 51, 193, 723, 2701, 10083, 37633, 140451, 524173, 1956243, 7300801, 27246963, 101687053, 379501251, 1416317953, 5285770563, 19726764301, 73621286643, 274758382273, 1025412242451, 3826890587533, 14282150107683, 53301709843201, 198924689265123, 742397047217293
Offset: 0

Views

Author

Keywords

Comments

Least side in a triangle with integer sides (m, m+1, m+2) (m >= 1) and integer area. The degenerate triangle with sides (1,2,3) is included.
Also describes triangles whose sides are consecutive integers and in which the inscribed circle has an integer radius. - Harvey P. Dale, Dec 28 2000 [Then, the length of this inradius is A001353(n). - Bernard Schott, Mar 21 2023]
Equivalently, positive integers m such that (3/16)*m^4 + (3/4)*m^3 + (3/8)*m^2 - (3/4)*m - 9/16 is a square (A000290), a direct result of Heron's formula. - Rick L. Shepherd, Sep 04 2005
"The problem is to find the sides of a triangle that shall have the values n, n + 1, and n + 2 and such that the perpendicular upon the longest side from the opposite vertex shall be rational. Nakane solves it as follows..." (Smith and Mikami, 2004). - Jonathan Sondow, May 09 2013
For n >= 1 all terms are congruent to {1,3} mod 10. Among first 100 terms there are 6 prime numbers: 3, 13, 193, 37633, 7300801, 1416317953. - Zak Seidov, Jun 14 2018
n > 1 is in this sequence if and only if the triangle with sides 4, n, n+2 has integer area (compare with A072221 for sides 3, n, n+1). - Michael Somos, May 11 2019
a(0) = 1 corresponds to the degenerate triangle [1,2,3], with area = 0. - Wesley Ivan Hurt, May 20 2020
Since this is a list it should really have offset 1, but that would require a large number of changes. - N. J. A. Sloane, Feb 04 2021
Least distance from centroid of a triangle to vertices, distances being m, m+1, m+2 and triangle area being a nonnegative integer. - Alexandru Petrescu, Feb 28 2023
Then, in this case, with a(n) = m, the corresponding area of this triangle is 3 * A011945(n+1). - Bernard Schott, Mar 21 2023

Examples

			G.f. = 1 + 3*x + 13*x^2 + 51*x^3 + 193*x^4 + 723*x^5 + 2701*x^6 + ... - _Michael Somos_, May 11 2019
		

References

  • Nakane Genkei (Nakane the Elder), Shichijo Beki Yenshiki, 1691.

Crossrefs

Cf. A011945 (areas), A334277 (perimeters) A001353 (inradius).
Cf. A003500 (middle side lengths), this sequence (smallest side lengths), A335025 (largest side lengths).
Cf. A001353, A019973 (2 + sqrt(3)), A102341, A103974, A103975.
Cf. A072221.

Programs

  • Magma
    I:=[1,3,13]; [n le 3 select I[n] else 4*Self(n-1)-Self(n-2)+2: n in [1..30]]; // Vincenzo Librandi, Nov 13 2018
  • Mathematica
    LinearRecurrence[{5,-5,1},{1,3,13},26] (* Ray Chandler, Jan 27 2014 *)
    CoefficientList[Series[(1 - 2 x + 3 x^2) / (1 - 5 x + 5 x^2 - x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Nov 13 2018 *)
    a[ n_] := 2 ChebyshevT[n, 2] - 1; (* Michael Somos, May 11 2019 *)
  • PARI
    for(a=1,10^9, b=a+1; c=a+2; s=(a+b+c)/2; if(issquare(s*(s-a)*(s-b)*(s-c)), print1(a,","))) \\ Rick L. Shepherd, Feb 18 2007
    
  • PARI
    a(n)=if(n<1,1,-1+ceil((2+sqrt(3))^(n))) \\ Ralf Stephan
    
  • PARI
    is(n)=issquare(3*n^2+6*n-9) \\ Charles R Greathouse IV, May 16 2014
    
  • PARI
    {a(n) = 2 * polchebyshev(n, 1, 2) - 1}; /* Michael Somos, May 11 2019 */
    

Formula

a(n) = 3 + floor((2 + sqrt(3))*a(n-1)), n >= 3. - Rick L. Shepherd, Sep 04 2005
From Paul Barry, Feb 17 2004: (Start)
a(n) = 4*a(n-1) - a(n-2) + 2.
a(n) = (2 + sqrt(3))^n + (2 - sqrt(3))^n - 1.
a(n) = 2*A001075(n) - 1.
G.f.: (1 - 2*x + 3*x^3)/((1 - x)*(1 - 4*x + x^2)) = (1 - 2*x + 3*x^2)/(1 - 5*x + 5*x^2 - x^3). (End)
For n >= 1, a(n) = ceiling((2 + sqrt(3))^n) - 1.
a(n) = A003500(n) - 1. - T. D. Noe, Jun 17 2004
a(n) = [x^n] ( 1 + 2*x + sqrt(1 + 2*x + 3*x^2) )^n. - Peter Bala, Jun 23 2015
E.g.f.: exp((2 + sqrt(3))*x) + exp((2 - sqrt(3))*x) - exp(x). - Franck Maminirina Ramaharo, Nov 12 2018
a(n) = a(-n) for all integer n. - Michael Somos, May 11 2019

Extensions

More terms from Rick L. Shepherd, Feb 18 2007
Definition revised by N. J. A. Sloane, Feb 04 2021

A011945 Areas of almost-equilateral Heronian triangles (integral side lengths m-1, m, m+1 and integral area).

Original entry on oeis.org

0, 6, 84, 1170, 16296, 226974, 3161340, 44031786, 613283664, 8541939510, 118973869476, 1657092233154, 23080317394680, 321467351292366, 4477462600698444, 62363009058485850, 868604664218103456, 12098102289994962534, 168504827395711372020, 2346969481249964245746
Offset: 1

Views

Author

E. K. Lloyd

Keywords

Comments

Corresponding m's are in A016064. Corresponding values of lesser side give A016064.

Crossrefs

Equals 6 * A007655(n+1).
Cf. this sequence (areas), A334277 (perimeters).
Cf. A003500 (middle side lengths), A016064 (smallest side lengths), A335025 (largest side lengths).

Programs

  • Mathematica
    CoefficientList[Series[6 x/(1 - 14 x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 15 2013 *)
    LinearRecurrence[{14,-1},{0,6},20] (* Harvey P. Dale, Jan 24 2015 *)

Formula

s(n) = floor((a+1)/4)*sqrt(3*(a+3)*(a-1)), where a = A016064(n). - Zak Seidov, Feb 23 2005
a(n) = 14*a(n-1) - a(n-2); a(1) = 0, a(2) = 6.
G.f.: 6*x^2/(1 - 14*x + x^2). - Philippe Deléham, Nov 17 2008
a(n) = (s/4)*((7 + 4*s)^n - (7 - 4*s)^n), where s = sqrt(3). - Zak Seidov, Apr 02 2014
E.g.f.: 6 - exp(7*x)*(12*cosh(4*sqrt(3)*x) - 7*sqrt(3)*sinh(4*sqrt(3)*x))/2. - Stefano Spezia, Dec 12 2022

Extensions

Entry revised by N. J. A. Sloane, Feb 03 2007

A335025 Largest side lengths of almost-equilateral Heronian triangles.

Original entry on oeis.org

5, 15, 53, 195, 725, 2703, 10085, 37635, 140453, 524175, 1956245, 7300803, 27246965, 101687055, 379501253, 1416317955, 5285770565, 19726764303, 73621286645, 274758382275, 1025412242453, 3826890587535, 14282150107685, 53301709843203, 198924689265125, 742397047217295, 2770663499604053
Offset: 1

Views

Author

Wesley Ivan Hurt, May 20 2020

Keywords

Examples

			a(1) = 5; there is one Heronian triangle with perimeter 12 whose side lengths are consecutive integers, [3,4,5] and 5 is the largest side length.
a(2) = 15; there is one Heronian triangle with perimeter 42 whose side lengths are consecutive integers, [13,14,15] and 15 is the largest side length.
		

Crossrefs

Cf. a(n) = A003500(n) + 1.
Cf. A011945 (areas), A334277 (perimeters).
Cf. A003500 (middle side lengths), A016064 (smallest side lengths), this sequence (largest side lengths).

Programs

  • Mathematica
    Table[Expand[(2 + Sqrt[3])^n + (2 - Sqrt[3])^n + 1], {n, 40}]

Formula

a(n) = (2 + sqrt(3))^n + (2 - sqrt(3))^n + 1.
From Alejandro J. Becerra Jr., Feb 12 2021: (Start)
G.f.: x*(3*x^2 - 10*x + 5)/((1 - x)*(x^2 - 4*x + 1)).
a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3). (End)
Showing 1-4 of 4 results.