cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A003500 a(n) = 4*a(n-1) - a(n-2) with a(0) = 2, a(1) = 4.

Original entry on oeis.org

2, 4, 14, 52, 194, 724, 2702, 10084, 37634, 140452, 524174, 1956244, 7300802, 27246964, 101687054, 379501252, 1416317954, 5285770564, 19726764302, 73621286644, 274758382274, 1025412242452, 3826890587534, 14282150107684, 53301709843202, 198924689265124
Offset: 0

Views

Author

Keywords

Comments

a(n) gives values of x satisfying x^2 - 3*y^2 = 4; corresponding y values are given by 2*A001353(n).
If M is any given term of the sequence, then the next one is 2*M + sqrt(3*M^2 - 12). - Lekraj Beedassy, Feb 18 2002
For n > 0, the three numbers a(n) - 1, a(n), and a(n) + 1 form a Fleenor-Heronian triangle, i.e., a Heronian triangle with consecutive sides, whose area A(n) may be obtained from the relation [4*A(n)]^2 = 3([a(2n)]^2 - 4); or A(n) = 3*A001353(2*n)/2 and whose semiperimeter is 3*a[n]/2. The sequence is symmetrical about a[0], i.e., a[-n] = a[n].
For n > 0, a(n) + 2 is the number of dimer tilings of a 2*n X 2 Klein bottle (cf. A103999).
Tsumura shows that, for prime p, a(p) is composite (contrary to a conjecture of Juricevic). - Charles R Greathouse IV, Apr 13 2010
Except for the first term, positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 12 = 0. - Colin Barker, Feb 04 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 192 = 0. - Colin Barker, Feb 16 2014
A268281(n) - 1 is a member of this sequence iff A268281(n) is prime. - Frank M Jackson, Feb 27 2016
a(n) gives values of x satisfying 3*x^2 - 4*y^2 = 12; corresponding y values are given by A005320. - Sture Sjöstedt, Dec 19 2017
Middle side lengths of almost-equilateral Heronian triangles. - Wesley Ivan Hurt, May 20 2020
For all elements k of the sequence, 3*(k-2)*(k+2) is a square. - Davide Rotondo, Oct 25 2020

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 82.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p.91.
  • Michael P. Cohen, Generating Heronian Triangles With Consecutive Integer Sides. Journal of Recreational Mathematics, vol. 30 no. 2 1999-2000 p. 123.
  • L. E. Dickson, History of The Theory of Numbers, Vol. 2 pp. 197;198;200;201. Chelsea NY.
  • Charles R. Fleenor, Heronian Triangles with Consecutive Integer Sides, Journal of Recreational Mathematics, Volume 28, no. 2 (1996-7) 113-115.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
  • V. D. To, "Finding All Fleenor-Heronian Triangles", Journal of Recreational Mathematics vol. 32 no.4 2003-4 pp. 298-301 Baywood NY.

Crossrefs

Cf. A011945 (areas), A334277 (perimeters).
Cf. this sequence (middle side lengths), A016064 (smallest side lengths), A335025 (largest side lengths).

Programs

  • Haskell
    a003500 n = a003500_list !! n
    a003500_list = 2 : 4 : zipWith (-)
       (map (* 4) $ tail a003500_list) a003500_list
    -- Reinhard Zumkeller, Dec 17 2011
    
  • Magma
    I:=[2,4]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2018
  • Maple
    A003500 := proc(n) option remember; if n <= 1 then 2*n+2 else 4*procname(n-1)-procname(n-2); fi;
    end proc;
  • Mathematica
    a[0]=2; a[1]=4; a[n_]:= a[n]= 4a[n-1] -a[n-2]; Table[a[n], {n, 0, 23}]
    LinearRecurrence[{4,-1},{2,4},30] (* Harvey P. Dale, Aug 20 2011 *)
    Table[Round@LucasL[2n, Sqrt[2]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
  • PARI
    x='x+O('x^99); Vec(-2*(-1+2*x)/(1-4*x+x^2)) \\ Altug Alkan, Apr 04 2016
    
  • Sage
    [lucas_number2(n,4,1) for n in range(0, 24)] # Zerinvary Lajos, May 14 2009
    

Formula

a(n) = ( 2 + sqrt(3) )^n + ( 2 - sqrt(3) )^n.
a(n) = 2*A001075(n).
G.f.: 2*(1 - 2*x)/(1 - 4*x + x^2). Simon Plouffe in his 1992 dissertation.
a(n) = A001835(n) + A001835(n+1).
a(n) = trace of n-th power of the 2 X 2 matrix [1 2 / 1 3]. - Gary W. Adamson, Jun 30 2003 [corrected by Joerg Arndt, Jun 18 2020]
From the addition formula, a(n+m) = a(n)*a(m) - a(m-n), it is easy to derive multiplication formulas, such as: a(2*n) = (a(n))^2 - 2, a(3*n) = (a(n))^3 - 3*(a(n)), a(4*n) = (a(n))^4 - 4*(a(n))^2 + 2, a(5*n) = (a(n))^5 - 5*(a(n))^3 + 5*(a(n)), a(6*n) = (a(n))^6 - 6*(a(n))^4 + 9*(a(n))^2 - 2, etc. The absolute values of the coefficients in the expansions are given by the triangle A034807. - John Blythe Dobson, Nov 04 2007
a(n) = 2*A001353(n+1) - 4*A001353(n). - R. J. Mathar, Nov 16 2007
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n=0..infinity} (1 + x^(4*n + 1))/(1 + x^(4*n + 3)). Let alpha = 2 - sqrt(3). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.24561 99455 06551 88869 ... = 2 + 1/(4 + 1/(14 + 1/(52 + ...))). Cf. A174500.
Also F(-alpha) = 0.74544 81786 39692 68884 ... has the continued fraction representation 1 - 1/(4 - 1/(14 - 1/(52 - ...))) and the simple continued fraction expansion 1/(1 + 1/((4 - 2) + 1/(1 + 1/((14 - 2) + 1/(1 + 1/((52 - 2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((4^2 - 4) + 1/(1 + 1/((14^2 - 4) + 1/(1 + 1/((52^2 - 4) + 1/(1 + ...))))))).
(End)
a(2^n) = A003010(n). - John Blythe Dobson, Mar 10 2014
a(n) = [x^n] ( (1 + 4*x + sqrt(1 + 8*x + 12*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
E.g.f.: 2*exp(2*x)*cosh(sqrt(3)*x). - Ilya Gutkovskiy, Apr 27 2016
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n*(n - k - 1)!/(k!*(n - 2*k)!)*4^(n - 2*k) for n >= 1. - Peter Luschny, May 10 2016
From Peter Bala, Oct 15 2019: (Start)
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; -1, 4].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
2*Sum_{n >= 1} 1/( a(n) - 6/a(n) ) = 1.
6*Sum_{n >= 1} (-1)^(n+1)/( a(n) + 2/a(n) ) = 1.
8*Sum_{n >= 1} 1/( a(n) + 24/(a(n) - 12/(a(n))) ) = 1.
8*Sum_{n >= 1} (-1)^(n+1)/( a(n) + 8/(a(n) + 4/(a(n))) ) = 1.
Series acceleration formulas for sums of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/2 - 6*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 6)),
Sum_{n >= 1} 1/a(n) = 1/8 + 24*Sum_{n >= 1} 1/(a(n)*(a(n)^2 + 12)),
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/6 + 2*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 2)) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/8 + 8*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 12)).
Sum_{n >= 1} 1/a(n) = ( theta_3(2-sqrt(3))^2 - 1 )/4 = 0.34770 07561 66992 06261 .... See Borwein and Borwein, Proposition 3.5 (i), p.91.
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - theta_3(sqrt(3)-2)^2 )/4. Cf. A003499 and A153415. (End)
a(n) = tan(Pi/12)^n + tan(5*Pi/12)^n. - Greg Dresden, Oct 01 2020
From Wolfdieter Lang, Sep 06 2021: (Start)
a(n) = S(n, 4) - S(n-2, 4) = 2*T(n, 2), for n >= 0, with S and T Chebyshev polynomials, with S(-1, x) = 0 and S(-2, x) = -1. S(n, 4) = A001353(n+1), for n >= -1, and T(n, 2) = A001075(n).
a(2*k) = A067902(k), a(2*k+1) = 4*A001570(k+1), for k >= 0. (End)
a(n) = sqrt(2 + 2*A011943(n+1)) = sqrt(2 + 2*A102344(n+1)), n>0. - Ralf Steiner, Sep 23 2021
Sum_{n>=1} arctan(3/a(n)^2) = Pi/6 - arctan(1/3) = A019673 - A105531 (Ohtskua, 2024). - Amiram Eldar, Aug 29 2024

Extensions

More terms from James Sellers, May 03 2000
Additional comments from Lekraj Beedassy, Feb 14 2002

A007655 Standard deviation of A007654.

Original entry on oeis.org

0, 1, 14, 195, 2716, 37829, 526890, 7338631, 102213944, 1423656585, 19828978246, 276182038859, 3846719565780, 53577891882061, 746243766783074, 10393834843080975, 144767444036350576, 2016350381665827089, 28084137899285228670, 391161580208327374291, 5448177985017298011404
Offset: 1

Views

Author

Keywords

Comments

a(n) corresponds also to one-sixth the area of Fleenor-Heronian triangle with middle side A003500(n). - Lekraj Beedassy, Jul 15 2002
a(n) give all (nontrivial, integer) solutions of Pell equation b(n+1)^2 - 48*a(n+1)^2 = +1 with b(n+1)=A011943(n), n>=0.
For n>=3, a(n) equals the permanent of the (n-2) X (n-2) tridiagonal matrix with 14's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,13}. - Milan Janjic, Jan 25 2015
6*a(n)^2 = 6*S(n-1, 14)^2 is the triangular number Tri((T(n, 7) - 1)/2) with Tri = A000217 and T = A053120. This is instance k = 3 of the general k-identity given in a comment to A001109. - Wolfdieter Lang, Feb 01 2016

Examples

			G.f. = x^2 + 14*x^3 + 195*x^4 + 2716*x^5 + 37829*x^6 + 526890*x^7 + ...
		

References

  • D. A. Benaron, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), this sequence (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    m:=7;; a:=[0,1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Magma
    [n le 2 select n-1 else 14*Self(n-1)-Self(n-2): n in [1..70]]; // Vincenzo Librandi, Feb 02 2016
    
  • Maple
    0,seq(orthopoly[U](n,7),n=0..30); # Robert Israel, Feb 04 2016
  • Mathematica
    Table[GegenbauerC[n, 1, 7], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    LinearRecurrence[{14,-1}, {0,1}, 20] (* Vincenzo Librandi, Feb 02 2016 *)
    ChebyshevU[Range[21] -2, 7] (* G. C. Greubel, Dec 23 2019 *)
    Table[Sum[Binomial[n, 2 k - 1]*7^(n - 2 k + 1)*48^(k - 1), {k, 1, n}], {n, 0, 15}] (* Horst H. Manninger, Jan 16 2022 *)
  • PARI
    concat(0, Vec((x^2/(1-14*x+x^2) + O(x^30)))) \\ Michel Marcus, Feb 02 2016
    
  • PARI
    vector(21, n, polchebyshev(n-2, 2, 7) ) \\ G. C. Greubel, Dec 23 2019
    
  • Sage
    [lucas_number1(n,14,1) for n in range(0,20)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [chebyshev_U(n,7) for n in (-1..20)] # G. C. Greubel, Dec 23 2019
    

Formula

a(n) = 14*a(n-1) - a(n-2).
G.f.: x^2/(1-14*x+x^2).
a(n+1) ~ 1/24*sqrt(3)*(2 + sqrt(3))^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
a(n+1) = S(n-1, 14), n>=0, with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. S(-1, x) := 0. See A049310.
a(n+1) = ( (7+4*sqrt(3))^n - (7-4*sqrt(3))^n )/(8*sqrt(3)).
a(n+1) = sqrt((A011943(n)^2 - 1)/48), n>=0.
Chebyshev's polynomials U(n-2, x) evaluated at x=7.
a(n) = A001353(2n)/4. - Lekraj Beedassy, Jul 15 2002
4*a(n+1) + A046184(n) = A055793(n+2) + A098301(n+1) 4*a(n+1) + A098301(n+1) + A055793(n+2) = A046184(n+1) (4*a(n+1))^2 = A098301(2n+1) (conjectures). - Creighton Dement, Nov 02 2004
(4*a(n))^2 = A103974(n)^2 - A011922(n-1)^2. - Paul D. Hanna, Mar 06 2005
From Mohamed Bouhamida, May 26 2007: (Start)
a(n) = 13*( a(n-1) + a(n-2) ) - a(n-3).
a(n) = 15*( a(n-1) - a(n-2) ) + a(n-3). (End)
a(n) = b such that (-1)^n/4*Integral_{x=-Pi/2..Pi/2} (sin((2*n-2)*x))/(2-sin(x)) dx = c+b*log(3). - Francesco Daddi, Aug 02 2011
a(n+2) = Sum_{k=0..n} A101950(n,k)*13^k. - Philippe Deléham, Feb 10 2012
Product {n >= 1} (1 + 1/a(n)) = 1/3*(3 + 2*sqrt(3)). - Peter Bala, Dec 23 2012
Product {n >= 2} (1 - 1/a(n)) = 1/7*(3 + 2*sqrt(3)). - Peter Bala, Dec 23 2012
a(n) = (A028230(n) - A001570(n))/2. - Richard R. Forberg, Nov 14 2013
E.g.f.: 1 - exp(7*x)*(12*cosh(4*sqrt(3)*x) - 7*sqrt(3)*sinh(4*sqrt(3)*x))/12. - Stefano Spezia, Dec 11 2022

Extensions

Chebyshev comments from Wolfdieter Lang, Nov 08 2002

A103974 Smaller sides (a) in (a,a,a+1)-integer triangle with integer area.

Original entry on oeis.org

1, 5, 65, 901, 12545, 174725, 2433601, 33895685, 472105985, 6575588101, 91586127425, 1275630195845, 17767236614401, 247465682405765, 3446752317066305, 48007066756522501, 668652182274248705
Offset: 1

Views

Author

Zak Seidov, Feb 23 2005

Keywords

Comments

Corresponding areas are: 0, 12, 1848, 351780, 68149872, 13219419708, 2564481115560 (see A104009).
What is the next term? Is the sequence finite? The possible last two digits of "a" are (it may help in searching for more terms): {01, 05, 09, 15, 19, 25, 29, 33, 35, 39, 45, 49, 51, 55, 59, 65, 69, 75, 79, 83, 85, 89, 95, 99}.
Equivalently, positive integers a such that 3/16*a^4 + 1/4*a^3 - 1/8*a^2 - 1/4*a - 1/16 is a square (A000290), a direct result of Heron's formula. Conjecture: lim_{n->oo} a(n+1)/a(n) = 7 + 4*sqrt(3) (= 7 + A010502). - Rick L. Shepherd, Sep 04 2005
Values x^2 + y^2, where the pair (x, y) solves for x^2 - 3y^2=1, i.e., a(n)= (A001075(n))^2 + (A001353(n))^2 = A055793(n) + A098301(n). - Lekraj Beedassy, Jul 13 2006
Floretion Algebra Multiplication Program, FAMP Code: 1lestes[ 3'i - 2'j + 'k + 3i' - 2j' + k' - 4'ii' - 3'jj' + 4'kk' - 'ij' - 'ji' + 3'jk' + 3'kj' + 4e ]

Crossrefs

Cf. A011922, A007655, A001353, A102341, A103975, A016064, A011945, A010502 (4*sqrt(3)), A000290 (square numbers), A350916.

Programs

  • Maple
    A:=rsolve({-A(n+3)+15*A(n+2)-15*A(n+1)+A(n), A(0) = 1, A(1) = 5, A(2)=65}, A(n), makeproc); # Mihailovs
  • Mathematica
    f[n_] := Simplify[((2 + Sqrt[3])^(2n) + (2 - Sqrt[3])^(2n) + 1)/3]; Table[ f[n], {n, 0, 16}] (* Or *)
    a[1] = 1; a[2] = 5; a[3] = 65; a[n_] := a[n] = 15a[n - 1] - 15a[n - 2] + a[n - 3]; Table[ a[n], {n, 17}] (* Or *)
    CoefficientList[ Series[(1 - 10x + 5x^2)/(1 - 15x + 15x^2 - x^3), {x, 0, 16}], x] (* Or *)
    Range[0, 16]! CoefficientList[ Simplify[ Series[(E^x + E^((7 + 4Sqrt[3])x) + E^((7 - 4Sqrt[3])x))/3, {x, 0, 16}]], x] (* Robert G. Wilson v, Mar 24 2005 *)
  • PARI
    for(a=1,10^6, b=a; c=a+1; s=(a+b+c)/2; if(issquare(s*(s-a)*(s-b)*(s-c)), print1(a,","))) /* Uses Heron's formula */ \\ Rick L. Shepherd, Sep 04 2005

Formula

Composite of comments from Alec Mihailovs (alec(AT)mihailovs.com) and David Terr, Mar 07 2005: (Start)
"a(n)^2 = A011922(n)^2 + (4*A007655(n))^2, so that A011922(n) = 1/2 base of triangles, A007655(n) = 1/4 height of triangles (conjectured by Paul Hanna).
Area is (a+1)/4*sqrt((3*a+1)*(a-1)). If a is even, the numerator is odd and the area is not an integer. That means a=2*k-1. In this case, Area=k*sqrt((3*k-1)*(k-1)).
Solving equation (3*k-1)*(k-1)=y^2, we get k=(2+sqrt(1+3*y^2))/3. That means that 1+3*y^2=x^2 with integer x and y. This is a Pell equation, all solutions of which have the form x=((2+sqrt(3))^n+(2-sqrt(3))^n)/2, y=((2+sqrt(3))^n-(2-sqrt(3))^n)/(2*sqrt(3)). Therefore k=(x+2)/3 is an integer only for even n. Then a=2*k-1=(2*x+1)/3 with even n. Q.E.D.
a(n)=(1/3)*((2+sqrt(3))^(2*n-2)+(2-sqrt(3))^(2*n-2)+1).
Recurrence: a(n+3)=15*a(n+2)-15*a(n+1)+a(n), a(0)=1, a(1)=5, a(2)=65.
G.f.: x*(1-10*x+5*x^2)/(1-15*x+15*x^2-x^3).
E.g.f.: 1/3*(exp(x)+exp((7+4*sqrt(3))*x)+exp((7-4*sqrt(3))*x)).
a(n) = 4U(n)^2 + 1, where U(1) = 0, U(2)=1 and U(n+1) = 4U(n) - U(n-1) for n>1. (U(n), V(n)) is the n-th solution to Pell's equation 3U(n)^2 + 1 = V(n)^2. (U(n) is the sequence A001353.)" (End)
a(n+1) = A098301(n+1) + A055793(n+2) - Creighton Dement, Apr 18 2005
a(n) = floor((7+4*sqrt(3))*a(n-1))-4, n>=3. - Rick L. Shepherd, Sep 04 2005
a(n)= [1+14*A007655(n+2)-194*A007655(n+1)]/3. - R. J. Mathar, Nov 16 2007
For n>=3, a(n) = 14*a(n-1) - a(n-2) - 4. It is one of 10 second-order linear recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916. - Max Alekseyev, Jan 22 2022

Extensions

More terms from Creighton Dement, Apr 18 2005
Edited by Max Alekseyev, Jan 22 2022

A016064 Smallest side lengths of almost-equilateral Heronian triangles (sides are consecutive positive integers, area is a nonnegative integer).

Original entry on oeis.org

1, 3, 13, 51, 193, 723, 2701, 10083, 37633, 140451, 524173, 1956243, 7300801, 27246963, 101687053, 379501251, 1416317953, 5285770563, 19726764301, 73621286643, 274758382273, 1025412242451, 3826890587533, 14282150107683, 53301709843201, 198924689265123, 742397047217293
Offset: 0

Views

Author

Keywords

Comments

Least side in a triangle with integer sides (m, m+1, m+2) (m >= 1) and integer area. The degenerate triangle with sides (1,2,3) is included.
Also describes triangles whose sides are consecutive integers and in which the inscribed circle has an integer radius. - Harvey P. Dale, Dec 28 2000 [Then, the length of this inradius is A001353(n). - Bernard Schott, Mar 21 2023]
Equivalently, positive integers m such that (3/16)*m^4 + (3/4)*m^3 + (3/8)*m^2 - (3/4)*m - 9/16 is a square (A000290), a direct result of Heron's formula. - Rick L. Shepherd, Sep 04 2005
"The problem is to find the sides of a triangle that shall have the values n, n + 1, and n + 2 and such that the perpendicular upon the longest side from the opposite vertex shall be rational. Nakane solves it as follows..." (Smith and Mikami, 2004). - Jonathan Sondow, May 09 2013
For n >= 1 all terms are congruent to {1,3} mod 10. Among first 100 terms there are 6 prime numbers: 3, 13, 193, 37633, 7300801, 1416317953. - Zak Seidov, Jun 14 2018
n > 1 is in this sequence if and only if the triangle with sides 4, n, n+2 has integer area (compare with A072221 for sides 3, n, n+1). - Michael Somos, May 11 2019
a(0) = 1 corresponds to the degenerate triangle [1,2,3], with area = 0. - Wesley Ivan Hurt, May 20 2020
Since this is a list it should really have offset 1, but that would require a large number of changes. - N. J. A. Sloane, Feb 04 2021
Least distance from centroid of a triangle to vertices, distances being m, m+1, m+2 and triangle area being a nonnegative integer. - Alexandru Petrescu, Feb 28 2023
Then, in this case, with a(n) = m, the corresponding area of this triangle is 3 * A011945(n+1). - Bernard Schott, Mar 21 2023

Examples

			G.f. = 1 + 3*x + 13*x^2 + 51*x^3 + 193*x^4 + 723*x^5 + 2701*x^6 + ... - _Michael Somos_, May 11 2019
		

References

  • Nakane Genkei (Nakane the Elder), Shichijo Beki Yenshiki, 1691.

Crossrefs

Cf. A011945 (areas), A334277 (perimeters) A001353 (inradius).
Cf. A003500 (middle side lengths), this sequence (smallest side lengths), A335025 (largest side lengths).
Cf. A001353, A019973 (2 + sqrt(3)), A102341, A103974, A103975.
Cf. A072221.

Programs

  • Magma
    I:=[1,3,13]; [n le 3 select I[n] else 4*Self(n-1)-Self(n-2)+2: n in [1..30]]; // Vincenzo Librandi, Nov 13 2018
  • Mathematica
    LinearRecurrence[{5,-5,1},{1,3,13},26] (* Ray Chandler, Jan 27 2014 *)
    CoefficientList[Series[(1 - 2 x + 3 x^2) / (1 - 5 x + 5 x^2 - x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Nov 13 2018 *)
    a[ n_] := 2 ChebyshevT[n, 2] - 1; (* Michael Somos, May 11 2019 *)
  • PARI
    for(a=1,10^9, b=a+1; c=a+2; s=(a+b+c)/2; if(issquare(s*(s-a)*(s-b)*(s-c)), print1(a,","))) \\ Rick L. Shepherd, Feb 18 2007
    
  • PARI
    a(n)=if(n<1,1,-1+ceil((2+sqrt(3))^(n))) \\ Ralf Stephan
    
  • PARI
    is(n)=issquare(3*n^2+6*n-9) \\ Charles R Greathouse IV, May 16 2014
    
  • PARI
    {a(n) = 2 * polchebyshev(n, 1, 2) - 1}; /* Michael Somos, May 11 2019 */
    

Formula

a(n) = 3 + floor((2 + sqrt(3))*a(n-1)), n >= 3. - Rick L. Shepherd, Sep 04 2005
From Paul Barry, Feb 17 2004: (Start)
a(n) = 4*a(n-1) - a(n-2) + 2.
a(n) = (2 + sqrt(3))^n + (2 - sqrt(3))^n - 1.
a(n) = 2*A001075(n) - 1.
G.f.: (1 - 2*x + 3*x^3)/((1 - x)*(1 - 4*x + x^2)) = (1 - 2*x + 3*x^2)/(1 - 5*x + 5*x^2 - x^3). (End)
For n >= 1, a(n) = ceiling((2 + sqrt(3))^n) - 1.
a(n) = A003500(n) - 1. - T. D. Noe, Jun 17 2004
a(n) = [x^n] ( 1 + 2*x + sqrt(1 + 2*x + 3*x^2) )^n. - Peter Bala, Jun 23 2015
E.g.f.: exp((2 + sqrt(3))*x) + exp((2 - sqrt(3))*x) - exp(x). - Franck Maminirina Ramaharo, Nov 12 2018
a(n) = a(-n) for all integer n. - Michael Somos, May 11 2019

Extensions

More terms from Rick L. Shepherd, Feb 18 2007
Definition revised by N. J. A. Sloane, Feb 04 2021

A103975 Smaller side in (a,a+1,a+1)-integer triangle with integer area.

Original entry on oeis.org

16, 240, 3360, 46816, 652080, 9082320, 126500416, 1761923520, 24540428880, 341804080816, 4760716702560, 66308229755040, 923554499868016, 12863454768397200, 179164812257692800, 2495443916839302016, 34757050023492535440, 484103256412056194160
Offset: 1

Views

Author

Zak Seidov, Feb 23 2005

Keywords

Crossrefs

Corresponding areas are given by A104008.

Programs

  • Mathematica
    a[n_] := 1/3 (-4 + (2 - Sqrt[3])^(1 + 2 n) + (2 + Sqrt[3])^(1 + 2 n)); A103975 = Expand[a /@ Range[1, 25]] (* Terentyev Oleg, Nov 12 2009 *)
    LinearRecurrence[{15,-15,1},{16,240,3360},30] (* Harvey P. Dale, Apr 25 2012 *)

Formula

a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3) - Max Alekseyev, May 31 2007
a(n) = 2*A120892(2*n+1) - Max Alekseyev, May 31 2007
a(n) = (1/3)*((2 - sqrt(3))^(1 + 2*n) + (2 + sqrt(3))^(1 + 2*n) - 4). [Terentyev Oleg, Nov 12 2009]
a(n) = (4/3)*(A001570(n+1)-1).
G.f.: -16*x / ((x-1)*(x^2-14*x+1)). - Colin Barker, Apr 09 2013

Extensions

More terms from Robert G. Wilson v, Mar 24 2005
More terms from Colin Barker, Apr 09 2013

A103772 Larger of two sides in a (k,k,k-1)-integer-sided triangle with integer area.

Original entry on oeis.org

1, 17, 241, 3361, 46817, 652081, 9082321, 126500417, 1761923521, 24540428881, 341804080817, 4760716702561, 66308229755041, 923554499868017, 12863454768397201, 179164812257692801, 2495443916839302017, 34757050023492535441, 484103256412056194161
Offset: 1

Views

Author

Zak Seidov, Feb 23 2005

Keywords

Comments

Corresponding areas are 0, 120, 25080, 4890480, 949077360, 184120982760, ...
Values of (x^2 + y^2)/2, where the pair (x, y) satisfies x^2 - 3*y^2 = -2, i.e., a(n) = {(A001834(n))^2 + (A001835(n))^2}/2 = {(A001834(n))^2 + A046184(n)}/2. - Lekraj Beedassy, Jul 13 2006
The heights of these triangles are given in A028230. (A028230(n), A045899(n), A103772(n)) forms a primitive Pythagorean triple.
Shortest side of (k,k+2,k+3) triangle such that median to longest side is integral. Sequence of such medians is A028230. - James R. Buddenhagen, Nov 22 2013
Numbers n such that (n+1)*(3n-1) is a square. - James R. Buddenhagen, Nov 22 2013

Crossrefs

Programs

  • Magma
    I:=[1,17]; [n le 2 select I[n] else 14*Self(n-1)-Self(n-2)+4: n in [1..20]]; // Vincenzo Librandi, Mar 05 2016
  • Mathematica
    a[1] = 1; a[2] = 17; a[3] = 241; a[n_] := a[n] = 15a[n - 1] - 15a[n - 2] + a[n - 3]; Table[ a[n] - 1, {n, 17}] (* Robert G. Wilson v, Mar 24 2005 *)
    LinearRecurrence[{15,-15,1},{1,17,241},20] (* Harvey P. Dale, Jan 02 2016 *)
    RecurrenceTable[{a[1] == 1, a[2] == 17, a[n] == 14 a[n-1] - a[n-2] + 4}, a, {n, 20}] (* Vincenzo Librandi, Mar 05 2016 *)
  • PARI
    Vec(x*(1+x)^2/((1-x)*(1-14*x+x^2)) + O(x^25)) \\ Colin Barker, Mar 05 2016
    

Formula

a(n) = (4*A001570(n+1) - 1)/3, n > 0. - Ralf Stephan, May 20 2007
a(n) = A052530(n-1)*A052530(n) + 1. - Johannes Boot, May 21 2011
G.f.: x*(1+x)^2/((1-x)*(1-14*x+x^2)). - Colin Barker, Apr 09 2012
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3); a(1)=1, a(2)=17, a(3)=241. - Harvey P. Dale, Jan 02 2016
a(n) = (-1+(7-4*sqrt(3))^n*(2+sqrt(3))-(-2+sqrt(3))*(7+4*sqrt(3))^n)/3. - Colin Barker, Mar 05 2016
a(n) = 14*a(n-1) - a(n-2) + 4. - Vincenzo Librandi, Mar 05 2016
a(n) = A001353(n)^2 + A001353(n-1)^2. - Antonio Alberto Olivares, Apr 06 2020

Extensions

More terms from Robert G. Wilson v, Mar 24 2005

A334277 Perimeters of almost-equilateral Heronian triangles.

Original entry on oeis.org

12, 42, 156, 582, 2172, 8106, 30252, 112902, 421356, 1572522, 5868732, 21902406, 81740892, 305061162, 1138503756, 4248953862, 15857311692, 59180292906, 220863859932, 824275146822, 3076236727356, 11480671762602, 42846450323052, 159905129529606, 596774067795372, 2227191141651882
Offset: 1

Views

Author

Wesley Ivan Hurt, May 20 2020

Keywords

Examples

			a(1) = 12; there is one Heronian triangle with perimeter 12 whose side lengths are consecutive integers, [3,4,5].
a(2) = 42; there is one Heronian triangle with perimeter 42 whose side lengths are consecutive integers, [13,14,15].
		

Crossrefs

Cf. A001075.
Cf. A011945 (areas), this sequence (perimeters).
Cf. A003500 (middle side lengths), A016064 (smallest side lengths), A335025 (largest side lengths).

Programs

  • Mathematica
    Table[Expand[3 ((2 + Sqrt[3])^n + (2 - Sqrt[3])^n)], {n, 40}]

Formula

a(n) = 3*A003500(n).
a(n) = 3 * ((2 + sqrt(3))^n + (2 - sqrt(3))^n).
From Alejandro J. Becerra Jr., Jan 29 2021: (Start)
G.f.: -6*x*(x - 2)/(x^2 - 4*x + 1).
a(n) = 4*a(n-1) - a(n-2). (End)
a(n) = 6 * A001075(n). - Joerg Arndt, Jan 29 2021
E.g.f.: 6*(exp(2*x)*cosh(sqrt(3)*x) - 1). - Stefano Spezia, Jan 29 2021

A335025 Largest side lengths of almost-equilateral Heronian triangles.

Original entry on oeis.org

5, 15, 53, 195, 725, 2703, 10085, 37635, 140453, 524175, 1956245, 7300803, 27246965, 101687055, 379501253, 1416317955, 5285770565, 19726764303, 73621286645, 274758382275, 1025412242453, 3826890587535, 14282150107685, 53301709843203, 198924689265125, 742397047217295, 2770663499604053
Offset: 1

Views

Author

Wesley Ivan Hurt, May 20 2020

Keywords

Examples

			a(1) = 5; there is one Heronian triangle with perimeter 12 whose side lengths are consecutive integers, [3,4,5] and 5 is the largest side length.
a(2) = 15; there is one Heronian triangle with perimeter 42 whose side lengths are consecutive integers, [13,14,15] and 15 is the largest side length.
		

Crossrefs

Cf. a(n) = A003500(n) + 1.
Cf. A011945 (areas), A334277 (perimeters).
Cf. A003500 (middle side lengths), A016064 (smallest side lengths), this sequence (largest side lengths).

Programs

  • Mathematica
    Table[Expand[(2 + Sqrt[3])^n + (2 - Sqrt[3])^n + 1], {n, 40}]

Formula

a(n) = (2 + sqrt(3))^n + (2 - sqrt(3))^n + 1.
From Alejandro J. Becerra Jr., Feb 12 2021: (Start)
G.f.: x*(3*x^2 - 10*x + 5)/((1 - x)*(x^2 - 4*x + 1)).
a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3). (End)

A144535 Numerators of continued fraction convergents to sqrt(3)/2.

Original entry on oeis.org

0, 1, 6, 13, 84, 181, 1170, 2521, 16296, 35113, 226974, 489061, 3161340, 6811741, 44031786, 94875313, 613283664, 1321442641, 8541939510, 18405321661, 118973869476, 256353060613, 1657092233154, 3570537526921, 23080317394680, 49731172316281, 321467351292366
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2008

Keywords

Examples

			0, 1, 6/7, 13/15, 84/97, 181/209, 1170/1351, 2521/2911, 16296/18817, 35113/40545, ...
		

Crossrefs

Bisections give A001570, A011945.

Programs

  • Magma
    I:=[0, 1, 6, 13]; [n le 4 select I[n] else 14*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 10 2013
    
  • Maple
    with(numtheory); Digits:=200: cf:=convert(evalf(sqrt(3)/2,confrac); [seq(nthconver(cf,i), i=0..100)];
  • Mathematica
    CoefficientList[Series[x (1 + 6 x - x^2)/((1 - 4 x + x^2) (1 + 4 x + x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 10 2013 *)
    Numerator[Convergents[Sqrt[3]/2,30]] (* or *) LinearRecurrence[{0,14,0,-1},{0,1,6,13},30] (* Harvey P. Dale, Feb 10 2014 *)
  • PARI
    Vec(x*(1+6*x-x^2)/((1-4*x+x^2)*(1+4*x+x^2)) + O(x^30)) \\ Colin Barker, Mar 27 2016

Formula

From Colin Barker, Apr 14 2012: (Start)
a(n) = 14*a(n-2) - a(n-4).
G.f.: x*(1 + 6*x - x^2)/((1 - 4*x + x^2)*(1 + 4*x + x^2)). (End)
a(n) = ((-(-2-sqrt(3))^n*(-3+sqrt(3)) + (2-sqrt(3))^n*(-3+sqrt(3)) - (3+sqrt(3))*((-2+sqrt(3))^n - (2+sqrt(3))^n)))/(8*sqrt(3)). - Colin Barker, Mar 27 2016
a(2*n) = 6*a(2*n-1) + a(2*n-2). a(2*n+1) = A003154(A101265(n+1)). - John Elias, Dec 10 2021

A175497 Numbers k with the property that k^2 is a product of two distinct triangular numbers.

Original entry on oeis.org

0, 6, 30, 35, 84, 180, 204, 210, 297, 330, 546, 840, 1170, 1189, 1224, 1710, 2310, 2940, 2970, 3036, 3230, 3900, 4914, 6090, 6930, 7134, 7140, 7245, 7440, 8976, 10710, 12654, 14175, 14820, 16296, 16380, 17220, 19866, 22770, 25172, 25944, 29103
Offset: 1

Views

Author

Zak Seidov, May 30 2010

Keywords

Comments

From Robert G. Wilson v, Jul 24 2010: (Start)
Terms in the i-th row are products contributed with a factor A000217(i):
(1) 0, 6, 35, 204, 1189, 6930, 40391, 235416, 1372105, 7997214, 46611179, ...
(2) 30, 297, 2940, 29103, 288090, 2851797, 28229880, ...
(3) 84, 1170, 16296, 226974, 3161340, ...
(4) 180, 3230, 57960, 1040050, 18662940, ...
(5) 330, 7245, 159060, 3492075, 76666590, ...
(6) 546, 14175, 368004, 9553929, ...
(7) 840, 25172, 754320, 22604428, ...
(8) 210, 1224, 7134, 41580, 242346, 1412496, 8232630, 47983284, ...
(9) 1710, 64935, 2465820, 93636225, ...
(10) 2310, 96965, 4070220, ...
(11) 3036, 139590, 6418104, ...
(12) 3900, 194922, 9742200, ...
(13) 4914, 265265, 14319396, ...
(14) 6090, 353115, 20474580, ...
(15) 7440, 461160, 28584480, ...
(End)
Numbers m with property that m^2 is a product of two distinct triangular numbers T(i) and T(j) such that i and j are in the same row of the square array A(n, k) defined in A322699. - Onur Ozkan, Mar 17 2023

Crossrefs

From Robert G. Wilson v, Jul 24 2010: (Start)
A001109 (with the exception of 1), A011945, A075848 and A055112 are all proper subsets.
Many terms are in common with A147779.
Cf. A152005 (two distinct tetrahedral numbers).

Programs

  • Maple
    isA175497 := proc(n)
        local i,Ti,Tj;
        if n = 0 then
            return true;
        end if;
        for i from 1 do
            Ti := i*(i+1)/2 ;
            if Ti > n^2 then
                return false;
            else
                Tj := n^2/Ti ;
                if Tj <> Ti and type(Tj,'integer') then
                    if isA000217(Tj) then  # code in A000217
                        return true;
                    end if;
                end if;
            end if;
        end do:
    end proc:
    for n from 0 do
        if isA175497(n) then
            printf("%d,\n",n);
        end if;
    end do: # R. J. Mathar, May 26 2016
  • Mathematica
    triangularQ[n_] := IntegerQ[Sqrt[8n + 1]];
    okQ[n_] := Module[{i, Ti, Tj}, If[n == 0, Return[True]]; For[i = 1, True, i++, Ti = i(i+1)/2; If[Ti > n^2, Return[False], Tj = n^2/Ti; If[Tj != Ti && IntegerQ[Tj], If[ triangularQ[Tj], Return[True]]]]]];
    Reap[For[k = 0, k < 30000, k++, If[okQ[k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Jun 13 2023, after R. J. Mathar *)
  • Python
    from itertools import count, islice, takewhile
    from sympy import divisors
    from sympy.ntheory.primetest import is_square
    def A175497_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda k:not k or any(map(lambda d: is_square((d<<3)+1) and is_square((k**2//d<<3)+1), takewhile(lambda d:d**2A175497_list = list(islice(A175497_gen(),20)) # Chai Wah Wu, Mar 13 2023
    
  • Python
    def A175497_list(n):
        def A322699_A(k, n):
            p, q, r, m = 0, k, 4*k*(k+1), 0
            while m < n:
                p, q, r = q, r, (4*k+3)*(r-q) + p
                m += 1
            return p
        def a(k, n, j):
            if n == 0: return 0
            p = A322699_A(k, n)*(A322699_A(k, n)+1)*(2*k+1) - a(k, n-1, 1)
            q = (4*k+2)*p - A322699_A(k, n)*(A322699_A(k, n)+1)//2
            m = 1
            while m < j: p, q = q, (4*k+2)*q - p; m += 1
            return p
        A = set([a(k, 1, 1) for k in range(n+1)])
        k, l, m = 1, 1, 2
        while True:
            x = a(k, l, m)
            if x < max(A):
                A |= {x}
                A  = set(sorted(A)[:n+1])
                m += 1
            else:
                if m == 1 and l == 1:
                    if k > n:
                        return sorted(A)
                    k += 1
                elif m > 1:
                    l += 1; m = 1
                elif l > 1:
                    k += 1; l, m = 1, 1
    # Onur Ozkan, Mar 15 2023

Formula

a(n)^2 = A169836(n). - R. J. Mathar, Mar 12 2023
Showing 1-10 of 13 results. Next