cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334278 Irregular table read by rows: T(n, k) is the coefficient of x^k in the chromatic polynomial of the cubical graph Q_n, 0 <= k <= 2^n.

Original entry on oeis.org

0, 1, 0, -1, 1, 0, -3, 6, -4, 1, 0, -133, 423, -572, 441, -214, 66, -12, 1, 0, -3040575, 14412776, -31680240, 43389646, -41821924, 30276984, -17100952, 7701952, -2794896, 818036, -191600, 35264, -4936, 496, -32, 1
Offset: 0

Views

Author

Peter Kagey, Apr 21 2020

Keywords

Comments

The sums of the absolute values of the entries in each row gives A334247, the number of acyclic orientations of edges of the n-cube.

Examples

			Table begins:
n/k| 0     1    2     3    4     5   6    7  8
---+-------------------------------------------
  0| 0,    1
  1| 0,   -1,   1
  2| 0,   -3,   6,   -4,   1
  3| 0, -133, 423, -572, 441, -214, 66, -12, 1
		

Crossrefs

Cf. A296914 is the reverse of row 3.
Cf. A334279 is analogous for the n-dimensional cross-polytope, the dual of the n-cube.

Programs

  • Maple
    with(GraphTheory): with(SpecialGraphs):
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
        ChromaticPolynomial(HypercubeGraph(n), x)):
    seq(T(n), n=0..4);  # Alois P. Heinz, Jan 14 2025
  • Mathematica
    T[n_, k_] := Coefficient[ChromaticPolynomial[HypercubeGraph[n], x], x, k]

Formula

T(n,0) = 0.
T(n,k) = Sum_{i=1..2^n}, Stirling1(i,k) * A334159(n,i). - Andrew Howroyd, Apr 25 2020