A334278 Irregular table read by rows: T(n, k) is the coefficient of x^k in the chromatic polynomial of the cubical graph Q_n, 0 <= k <= 2^n.
0, 1, 0, -1, 1, 0, -3, 6, -4, 1, 0, -133, 423, -572, 441, -214, 66, -12, 1, 0, -3040575, 14412776, -31680240, 43389646, -41821924, 30276984, -17100952, 7701952, -2794896, 818036, -191600, 35264, -4936, 496, -32, 1
Offset: 0
Examples
Table begins: n/k| 0 1 2 3 4 5 6 7 8 ---+------------------------------------------- 0| 0, 1 1| 0, -1, 1 2| 0, -3, 6, -4, 1 3| 0, -133, 423, -572, 441, -214, 66, -12, 1
Links
- Peter Kagey, Table of n, a(n) for n = 0..68 (rows 0..5; row 5 from Andrew Howroyd's file)
- Andrew Howroyd, Chromatic Polynomials of Hypercubes Q_0 to Q_5
- Eric Weisstein's World of Mathematics, Chromatic Polynomial.
- Eric Weisstein's World of Mathematics, Hypercube Graph.
Crossrefs
Programs
-
Maple
with(GraphTheory): with(SpecialGraphs): T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))( ChromaticPolynomial(HypercubeGraph(n), x)): seq(T(n), n=0..4); # Alois P. Heinz, Jan 14 2025
-
Mathematica
T[n_, k_] := Coefficient[ChromaticPolynomial[HypercubeGraph[n], x], x, k]
Formula
T(n,0) = 0.
T(n,k) = Sum_{i=1..2^n}, Stirling1(i,k) * A334159(n,i). - Andrew Howroyd, Apr 25 2020
Comments