cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A334309 Numbers k such that k and k+1 are both base phi Niven numbers (A334308).

Original entry on oeis.org

1, 15, 35, 90, 95, 231, 644, 728, 944, 1016, 1110, 1331, 1629, 1736, 1770, 1899, 1925, 2232, 2255, 2384, 2456, 2629, 2652, 2760, 3104, 3176, 3288, 3444, 3729, 3789, 3860, 4410, 4415, 4509, 4544, 4718, 4939, 4960, 5229, 5239, 5489, 5789, 5831, 5984, 6039, 6111
Offset: 1

Views

Author

Amiram Eldar, Apr 22 2020

Keywords

Examples

			1 is a term since 1 and 2 are both base phi Niven numbers.
		

Crossrefs

Programs

  • Mathematica
    phiDigSum[1] = 1; phiDigSum[n_] := Plus @@ RealDigits[n, GoldenRatio, 2*Ceiling[ Log[GoldenRatio, n] ]][[1]]; phiNivenQ[n_] := Divisible[n, phiDigSum[n]]; Select[Range[6000], phiNivenQ[#] && phiNivenQ[# + 1] &]

A334310 Starts of runs of 3 consecutive base phi Niven numbers (A334308).

Original entry on oeis.org

17171, 20760, 29183, 32772, 51336, 65840, 66608, 67990, 89054, 95563, 103682, 108910, 133990, 136512, 167598, 173640, 190094, 197218, 205478, 207364, 223873, 241934, 247115, 248443, 252014, 258816, 261135, 278783, 285129, 285130, 289392, 325934, 326520, 335178
Offset: 1

Views

Author

Amiram Eldar, Apr 22 2020

Keywords

Examples

			17171 is a term since 17171, 17172 and 17173 are all base phi Niven numbers.
		

Crossrefs

Programs

  • Mathematica
    phiDigSum[1] = 1; phiDigSum[n_] := Plus @@ RealDigits[n, GoldenRatio, 2*Ceiling[ Log[GoldenRatio, n] ]][[1]]; phiNivenQ[n_] := Divisible[n, phiDigSum[n]]; q1 = phiNivenQ[1]; q2 = phiNivenQ[2]; seq = {}; Do[q3 = phiNivenQ[n]; If[q1 && q2 && q3, AppendTo[seq, n - 2]]; q1 = q2; q2 = q3, {n, 3, 300000}]; seq

A334311 Starts of runs of 4 consecutive base phi Niven numbers (A334308).

Original entry on oeis.org

285129, 1958893, 2501533, 6488440, 7069840, 8803023, 16514327, 23826399, 34031773, 52256248, 68198847, 72969138, 76779087, 77622950, 87430210, 87474672, 96485487, 114137958, 120197293, 136275022, 151444458, 173740578, 174878352, 183872325, 188385855, 196268415
Offset: 1

Views

Author

Amiram Eldar, Apr 22 2020

Keywords

Examples

			285129 is a term since 285129, 285130, 285131 and 285132 are all base phi Niven numbers.
		

Crossrefs

Programs

  • Mathematica
    phiDigSum[1] = 1; phiDigSum[n_] := Plus @@ RealDigits[n, GoldenRatio, 2*Ceiling[ Log[GoldenRatio, n] ]][[1]]; phiNivenQ[n_] := Divisible[n, phiDigSum[n]]; q1 = phiNivenQ[1]; q2 = phiNivenQ[2]; q3 = phiNivenQ[3]; seq = {}; Do[q4 = phiNivenQ[n]; If[q1 && q2 && q3 && q4, AppendTo[seq, n - 3]]; q1 = q2; q2 = q3; q3 = q4, {n, 4, 10^5}]; seq

A342426 Niven numbers in base 3/2: numbers divisible by their sum of digits in fractional base 3/2 (A244040).

Original entry on oeis.org

1, 2, 6, 9, 14, 21, 40, 42, 56, 72, 84, 108, 110, 120, 126, 130, 143, 154, 156, 162, 165, 168, 169, 176, 180, 182, 189, 198, 220, 225, 231, 243, 252, 280, 288, 297, 306, 308, 320, 322, 330, 336, 348, 350, 364, 390, 423, 430, 432, 459, 460, 462, 480, 490, 504
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2021

Keywords

Examples

			6 is a term since its representation in base 3/2 is 210 and 2 + 1 + 0 = 3 is a divisor of 6.
9 is a term since its representation in base 3/2 is 2100 and 2 + 1 + 0 + 0 = 3 is a divisor of 9.
		

Crossrefs

Subsequences: A342427, A342428, A342429.
Similar sequences: A005349 (decimal), A049445 (binary), A064150 (ternary), A064438 (quaternary), A064481 (base 5), A118363 (factorial), A328208 (Zeckendorf), A328212 (lazy Fibonacci), A331085 (negaFibonacci), A333426 (primorial), A334308 (base phi), A331728 (negabinary).

Programs

  • Mathematica
    s[0] = 0; s[n_] := s[n] = s[2*Floor[n/3]] + Mod[n, 3]; q[n_] := Divisible[n, s[n]]; Select[Range[500], q]

A342726 Niven numbers in base i-1: numbers that are divisible by the sum of their digits in base i-1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 12, 15, 16, 18, 20, 24, 25, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 50, 54, 60, 64, 65, 66, 70, 77, 80, 88, 90, 96, 99, 100, 110, 112, 120, 124, 125, 126, 130, 140, 144, 145, 147, 150, 156, 160, 168, 170, 180, 182, 184, 185, 186, 190, 192
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2021

Keywords

Comments

Numbers k that are divisible by A066323(k).
Equivalently, Niven numbers in base -4, since A066323(k) is also the sum of the digits of k in base -4.

Examples

			2 is a term since its representation in base i-1 is 1100 and 1+1+0+0 = 2 is a divisor of 2.
10 is a term since its representation in base i-1 is 111001100 and 1+1+1+0+0+1+1+0+0 = 5 is a divisor of 10.
		

Crossrefs

Similar sequences: A005349 (decimal), A049445 (binary), A064150 (ternary), A064438 (quaternary), A064481 (base 5), A118363 (factorial), A328208 (Zeckendorf), A328212 (lazy Fibonacci), A331085 (negaFibonacci), A333426 (primorial), A334308 (base phi), A331728 (negabinary), A342426 (base 3/2).

Programs

  • Mathematica
    v = {{0, 0, 0, 0}, {0, 0, 0, 1}, {1, 1, 0, 0}, {1, 1, 0, 1}}; q[n_] := Divisible[n, Total[Flatten @ v[[1 + Reverse @ Most[Mod[NestWhileList[(# - Mod[#, 4])/-4 &, n, # != 0 &], 4]]]]]]; Select[Range[200], q]

A344341 Gray-code Niven numbers: numbers divisible by the number of 1's in their binary reflected Gray code (A005811).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 15, 16, 20, 24, 27, 28, 30, 31, 32, 33, 36, 39, 40, 42, 44, 45, 48, 51, 52, 56, 57, 60, 62, 63, 64, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 99, 100, 104, 105, 108, 111, 112, 116, 120, 123, 124, 126, 127, 128, 129, 132, 135, 136
Offset: 1

Views

Author

Amiram Eldar, May 15 2021

Keywords

Examples

			2 is a term since its Gray code is 11 and 1+1 = 2 is a divisor of 2.
6 is a term since its Gray code is 101 and 1+0+1 = 2 is a divisor of 6.
		

Crossrefs

Subsequences: A344342, A344343, A344344.
Similar sequences: A005349 (decimal), A049445 (binary), A064150 (ternary), A064438 (quaternary), A064481 (base 5), A118363 (factorial), A328208 (Zeckendorf), A328212 (lazy Fibonacci), A331085 (negaFibonacci), A333426 (primorial), A334308 (base phi), A331728 (negabinary), A342426 (base 3/2), A342726 (base i-1).

Programs

  • Mathematica
    gcNivenQ[n_] := Divisible[n, DigitCount[BitXor[n, Floor[n/2]], 2, 1]]; Select[Range[150], gcNivenQ]

A351714 Lucas-Niven numbers: numbers that are divisible by the number of terms in their minimal (or greedy) representation in terms of the Lucas numbers (A130310).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 18, 20, 22, 24, 27, 29, 30, 32, 36, 39, 40, 42, 47, 48, 50, 54, 57, 58, 60, 64, 66, 69, 72, 76, 78, 80, 81, 84, 90, 92, 94, 96, 100, 104, 108, 120, 123, 124, 126, 129, 130, 132, 134, 135, 138, 140, 144, 152, 153, 156, 159, 160
Offset: 1

Views

Author

Amiram Eldar, Feb 17 2022

Keywords

Comments

Numbers k such that A116543(k) | k.

Examples

			6 is a term since its minimal Lucas representation, A130310(6) = 1001, has A116543(6) = 2 1's and 6 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    lucasNivenQ[n_] := Module[{s = {}, m = n, k = 1}, While[m > 0, If[m == 1, k = 1; AppendTo[s, k]; m = 0, If[m == 2, k = 0; AppendTo[s, k]; m = 0, While[LucasL[k] <= m, k++]; k--; AppendTo[s, k]; m -= LucasL[k]; k = 1]]]; Divisible[n, Plus @@ IntegerDigits[Total[2^s], 2]]]; Select[Range[160], lucasNivenQ]

A351719 Lazy-Lucas-Niven numbers: numbers divisible by the number of terms in their maximal (or lazy) representation in terms of the Lucas numbers (A130311).

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 16, 20, 25, 40, 42, 54, 60, 66, 78, 84, 91, 96, 104, 112, 120, 126, 144, 154, 161, 168, 175, 176, 180, 182, 184, 192, 203, 210, 216, 217, 224, 232, 234, 240, 243, 264, 270, 280, 288, 304, 306, 310, 315, 320, 322, 328, 336, 344, 350, 360, 378
Offset: 1

Views

Author

Amiram Eldar, Feb 17 2022

Keywords

Comments

Numbers k such that A131343(k) | k.

Examples

			6 is a term since its maximal Lucas representation, A130311(6) = 111, has A131343(6) = 3 1's and 6 is divisible by 3.
		

Crossrefs

Programs

  • Mathematica
    lazy = Select[IntegerDigits[Range[3000], 2], SequenceCount[#, {0, 0}] == 0 &]; t = Total[# * Reverse @ LucasL[Range[0, Length[#] - 1]]] & /@ lazy; s = FromDigits /@ lazy[[TakeWhile[Flatten[FirstPosition[t, #] & /@ Range[Max[t]]], NumberQ]]]; Position[Divisible[Range[Length[s]], Plus @@@ IntegerDigits[s]], True] // Flatten

A352089 Tribonacci-Niven numbers: numbers that are divisible by the number of terms in their minimal (or greedy) representation in terms of the tribonacci numbers (A278038).

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 12, 13, 14, 18, 20, 21, 24, 26, 27, 28, 30, 33, 36, 39, 40, 44, 46, 48, 56, 60, 68, 69, 72, 75, 76, 80, 81, 82, 84, 87, 88, 90, 94, 96, 100, 108, 115, 116, 120, 126, 128, 129, 132, 135, 136, 138, 140, 149, 150, 156, 162, 168, 174, 176, 177, 180
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2022

Keywords

Comments

Numbers k such that A278043(k) | k.
The positive tribonacci numbers (A000073) are all terms.
If k = A000073(A042964(m)) is an odd tribonacci number, then k+1 is a term.
Ray (2005) and Ray and Cooper (2006) called these numbers "3-Zeckendorf Niven numbers" and proved that their asymptotic density is 0. - Amiram Eldar, Sep 06 2024

Examples

			6 is a term since its minimal tribonacci representation, A278038(6) = 110, has A278043(6) = 2 1's and 6 is divisible by 2.
		

References

  • Andrew B. Ray, On the natural density of the k-Zeckendorf Niven numbers, Ph.D. dissertation, Central Missouri State University, 2005.

Crossrefs

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; Divisible[n, DigitCount[Total[2^(s - 1)], 2, 1]]]; Select[Range[180], q]

A352107 Lazy-tribonacci-Niven numbers: numbers that are divisible by the number of terms in their maximal (or lazy) representation in terms of the tribonacci numbers (A352103).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 18, 20, 21, 24, 28, 30, 33, 36, 39, 40, 48, 50, 56, 60, 68, 70, 72, 75, 76, 80, 90, 96, 100, 108, 115, 116, 120, 135, 136, 140, 150, 155, 156, 160, 162, 168, 175, 176, 177, 180, 184, 185, 188, 195, 198, 204, 205, 208, 215, 216, 225, 231, 260
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Comments

Numbers k such that A352104(k) | k.

Examples

			6 is a term since its maximal tribonacci representation, A352103(6) = 110, has A352104(6) = 2 1's and 6 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; q[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, False, Divisible[n, Total[v[[i[[1, 1]] ;; -1]]]]]]; Select[Range[300], q]
Showing 1-10 of 18 results. Next