cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A342427 Numbers k such that k and k + 1 are both Niven numbers in base 3/2 (A342426).

Original entry on oeis.org

1, 168, 459, 1817, 2196, 2197, 2655, 3128, 3280, 3699, 4199, 4575, 4927, 5184, 5795, 6600, 7215, 7259, 7656, 7657, 8448, 9636, 11304, 11339, 12492, 14160, 14175, 14424, 14805, 15624, 15625, 16335, 16336, 16925, 17802, 19170, 20349, 20811, 21624, 21735, 22197
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2021

Keywords

Examples

			168 is a term since both 168 and 169 are Niven numbers in base 3/2. 168 in base 3/2 is 2120220210 and 2+1+2+0+2+2+0+2+1+0 = 12 is a divisor of 168. 169 in base 3/2 is 2120220211 and 2+1+2+0+2+2+0+2+1+1 = 13 is a divisor of 169.
		

Crossrefs

Subsequence of A342426.
Subsequences: A342428 and A342429.
Similar sequences: A330927 (decimal), A328205 (factorial), A328209 (Zeckendorf), A328213 (lazy Fibonacci), A330931 (binary), A331086 (negaFibonacci), A333427 (primorial), A334309 (base phi), A331820 (negabinary).

Programs

  • Mathematica
    s[0] = 0; s[n_] := s[n] = s[2*Floor[n/3]] + Mod[n, 3]; q[n_] := Divisible[n, s[n]]; Select[Range[22000], q[#] && q[# + 1] &]

A342428 Starts of runs of 3 consecutive Niven numbers in base 3/2 (A342426).

Original entry on oeis.org

2196, 7656, 15624, 16335, 64375, 109224, 171624, 202824, 328887, 329427, 392733, 393640, 447578, 482238, 494450, 520695, 631824, 723519, 773790, 785695, 820960, 876987, 981783, 986607, 1021824, 1026750, 1030455, 1084048, 1108094, 1160670, 1235070, 1242824, 1412908
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2021

Keywords

Examples

			2196 is a term since 2196, 2197 and 2198 are all Niven numbers in base 3/2.
		

Crossrefs

Subsequence of A342426 and A342427.
Subsequences: A342429.
Similar sequences: A154701 (decimal), A328206 (factorial), A328210 (Zeckendorf), A328214 (lazy Fibonacci), A330932 (binary), A331087 (negaFibonacci), A333428 (primorial), A334310 (base phi), A331822 (negabinary).

Programs

  • Mathematica
    s[0] = 0; s[n_] := s[n] = s[2*Floor[n/3]] + Mod[n, 3]; q[n_] := Divisible[n, s[n]]; Select[Range[10^6], AllTrue[# + {0, 1, 2}, q] &]

A342429 Starts of runs of 4 consecutive Niven numbers in base 3/2 (A342426).

Original entry on oeis.org

1649373, 4029519, 15281054, 31906263, 43387386, 58198173, 94468958, 100084949, 131393766, 131986502, 140282279, 156786124, 211004079, 246960048, 253000850, 278206663, 310135917, 330168203, 351204398, 363280904, 412296883, 504736647, 515831624, 537255647, 566300238
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2021

Keywords

Comments

Are there 5 consecutive Niven numbers in base 3/2? There are no such numbers below 3*10^9.

Examples

			1649373 is a term since 1649373, 1649374, 1649375 and 1649376 are all Niven numbers in base 3/2.
		

Crossrefs

Subsequence of A342426, A342427 and A342428.
Similar sequences: A141769 (decimal), A328207 (factorial), A328211 (Zeckendorf), A328215 (lazy Fibonacci), A330933 (binary), A334311 (base phi), A331824 (negabinary).

Programs

  • Mathematica
    s[0] = 0; s[n_] := s[n] = s[2*Floor[n/3]] + Mod[n, 3]; q[n_] := Divisible[n, s[n]]; v = q /@ Range[4]; seq = {}; Do[v = Join[Rest[v], {q[k]}]; If[And @@ v, AppendTo[seq, k - 3]], {k, 4, 10^7}]; seq

A342726 Niven numbers in base i-1: numbers that are divisible by the sum of their digits in base i-1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 12, 15, 16, 18, 20, 24, 25, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 50, 54, 60, 64, 65, 66, 70, 77, 80, 88, 90, 96, 99, 100, 110, 112, 120, 124, 125, 126, 130, 140, 144, 145, 147, 150, 156, 160, 168, 170, 180, 182, 184, 185, 186, 190, 192
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2021

Keywords

Comments

Numbers k that are divisible by A066323(k).
Equivalently, Niven numbers in base -4, since A066323(k) is also the sum of the digits of k in base -4.

Examples

			2 is a term since its representation in base i-1 is 1100 and 1+1+0+0 = 2 is a divisor of 2.
10 is a term since its representation in base i-1 is 111001100 and 1+1+1+0+0+1+1+0+0 = 5 is a divisor of 10.
		

Crossrefs

Similar sequences: A005349 (decimal), A049445 (binary), A064150 (ternary), A064438 (quaternary), A064481 (base 5), A118363 (factorial), A328208 (Zeckendorf), A328212 (lazy Fibonacci), A331085 (negaFibonacci), A333426 (primorial), A334308 (base phi), A331728 (negabinary), A342426 (base 3/2).

Programs

  • Mathematica
    v = {{0, 0, 0, 0}, {0, 0, 0, 1}, {1, 1, 0, 0}, {1, 1, 0, 1}}; q[n_] := Divisible[n, Total[Flatten @ v[[1 + Reverse @ Most[Mod[NestWhileList[(# - Mod[#, 4])/-4 &, n, # != 0 &], 4]]]]]]; Select[Range[200], q]

A344341 Gray-code Niven numbers: numbers divisible by the number of 1's in their binary reflected Gray code (A005811).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 15, 16, 20, 24, 27, 28, 30, 31, 32, 33, 36, 39, 40, 42, 44, 45, 48, 51, 52, 56, 57, 60, 62, 63, 64, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 99, 100, 104, 105, 108, 111, 112, 116, 120, 123, 124, 126, 127, 128, 129, 132, 135, 136
Offset: 1

Views

Author

Amiram Eldar, May 15 2021

Keywords

Examples

			2 is a term since its Gray code is 11 and 1+1 = 2 is a divisor of 2.
6 is a term since its Gray code is 101 and 1+0+1 = 2 is a divisor of 6.
		

Crossrefs

Subsequences: A344342, A344343, A344344.
Similar sequences: A005349 (decimal), A049445 (binary), A064150 (ternary), A064438 (quaternary), A064481 (base 5), A118363 (factorial), A328208 (Zeckendorf), A328212 (lazy Fibonacci), A331085 (negaFibonacci), A333426 (primorial), A334308 (base phi), A331728 (negabinary), A342426 (base 3/2), A342726 (base i-1).

Programs

  • Mathematica
    gcNivenQ[n_] := Divisible[n, DigitCount[BitXor[n, Floor[n/2]], 2, 1]]; Select[Range[150], gcNivenQ]

A351714 Lucas-Niven numbers: numbers that are divisible by the number of terms in their minimal (or greedy) representation in terms of the Lucas numbers (A130310).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 18, 20, 22, 24, 27, 29, 30, 32, 36, 39, 40, 42, 47, 48, 50, 54, 57, 58, 60, 64, 66, 69, 72, 76, 78, 80, 81, 84, 90, 92, 94, 96, 100, 104, 108, 120, 123, 124, 126, 129, 130, 132, 134, 135, 138, 140, 144, 152, 153, 156, 159, 160
Offset: 1

Views

Author

Amiram Eldar, Feb 17 2022

Keywords

Comments

Numbers k such that A116543(k) | k.

Examples

			6 is a term since its minimal Lucas representation, A130310(6) = 1001, has A116543(6) = 2 1's and 6 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    lucasNivenQ[n_] := Module[{s = {}, m = n, k = 1}, While[m > 0, If[m == 1, k = 1; AppendTo[s, k]; m = 0, If[m == 2, k = 0; AppendTo[s, k]; m = 0, While[LucasL[k] <= m, k++]; k--; AppendTo[s, k]; m -= LucasL[k]; k = 1]]]; Divisible[n, Plus @@ IntegerDigits[Total[2^s], 2]]]; Select[Range[160], lucasNivenQ]

A351719 Lazy-Lucas-Niven numbers: numbers divisible by the number of terms in their maximal (or lazy) representation in terms of the Lucas numbers (A130311).

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 16, 20, 25, 40, 42, 54, 60, 66, 78, 84, 91, 96, 104, 112, 120, 126, 144, 154, 161, 168, 175, 176, 180, 182, 184, 192, 203, 210, 216, 217, 224, 232, 234, 240, 243, 264, 270, 280, 288, 304, 306, 310, 315, 320, 322, 328, 336, 344, 350, 360, 378
Offset: 1

Views

Author

Amiram Eldar, Feb 17 2022

Keywords

Comments

Numbers k such that A131343(k) | k.

Examples

			6 is a term since its maximal Lucas representation, A130311(6) = 111, has A131343(6) = 3 1's and 6 is divisible by 3.
		

Crossrefs

Programs

  • Mathematica
    lazy = Select[IntegerDigits[Range[3000], 2], SequenceCount[#, {0, 0}] == 0 &]; t = Total[# * Reverse @ LucasL[Range[0, Length[#] - 1]]] & /@ lazy; s = FromDigits /@ lazy[[TakeWhile[Flatten[FirstPosition[t, #] & /@ Range[Max[t]]], NumberQ]]]; Position[Divisible[Range[Length[s]], Plus @@@ IntegerDigits[s]], True] // Flatten

A352089 Tribonacci-Niven numbers: numbers that are divisible by the number of terms in their minimal (or greedy) representation in terms of the tribonacci numbers (A278038).

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 12, 13, 14, 18, 20, 21, 24, 26, 27, 28, 30, 33, 36, 39, 40, 44, 46, 48, 56, 60, 68, 69, 72, 75, 76, 80, 81, 82, 84, 87, 88, 90, 94, 96, 100, 108, 115, 116, 120, 126, 128, 129, 132, 135, 136, 138, 140, 149, 150, 156, 162, 168, 174, 176, 177, 180
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2022

Keywords

Comments

Numbers k such that A278043(k) | k.
The positive tribonacci numbers (A000073) are all terms.
If k = A000073(A042964(m)) is an odd tribonacci number, then k+1 is a term.
Ray (2005) and Ray and Cooper (2006) called these numbers "3-Zeckendorf Niven numbers" and proved that their asymptotic density is 0. - Amiram Eldar, Sep 06 2024

Examples

			6 is a term since its minimal tribonacci representation, A278038(6) = 110, has A278043(6) = 2 1's and 6 is divisible by 2.
		

References

  • Andrew B. Ray, On the natural density of the k-Zeckendorf Niven numbers, Ph.D. dissertation, Central Missouri State University, 2005.

Crossrefs

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; Divisible[n, DigitCount[Total[2^(s - 1)], 2, 1]]]; Select[Range[180], q]

A352107 Lazy-tribonacci-Niven numbers: numbers that are divisible by the number of terms in their maximal (or lazy) representation in terms of the tribonacci numbers (A352103).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 18, 20, 21, 24, 28, 30, 33, 36, 39, 40, 48, 50, 56, 60, 68, 70, 72, 75, 76, 80, 90, 96, 100, 108, 115, 116, 120, 135, 136, 140, 150, 155, 156, 160, 162, 168, 175, 176, 177, 180, 184, 185, 188, 195, 198, 204, 205, 208, 215, 216, 225, 231, 260
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Comments

Numbers k such that A352104(k) | k.

Examples

			6 is a term since its maximal tribonacci representation, A352103(6) = 110, has A352104(6) = 2 1's and 6 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; q[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, False, Divisible[n, Total[v[[i[[1, 1]] ;; -1]]]]]]; Select[Range[300], q]

A352320 Pell-Niven numbers: numbers that are divisible by the sum of the digits in their minimal (or greedy) representation in terms of the Pell numbers (A317204).

Original entry on oeis.org

1, 2, 4, 5, 6, 9, 10, 12, 14, 15, 18, 20, 24, 28, 29, 30, 33, 34, 36, 39, 40, 42, 44, 48, 50, 58, 60, 63, 64, 68, 70, 72, 82, 84, 87, 88, 90, 92, 96, 110, 111, 112, 115, 116, 120, 125, 126, 135, 140, 141, 144, 155, 164, 165, 168, 169, 170, 174, 180, 183, 184, 186
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

Numbers k such that A265744(k) | k.
All the positive Pell numbers (A000129) are terms.

Examples

			6 is a term since its minimal Pell representation, A317204(6) = 101, has A265744(6) = 2 1's and 6 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; Divisible[n, Plus @@ IntegerDigits[ Total[3^(s - 1)], 3]]]; Select[Range[200], q]
Showing 1-10 of 16 results. Next