A351715 Numbers k such that k and k + 1 are both Lucas-Niven numbers (A351714).
1, 2, 3, 6, 7, 10, 11, 29, 39, 47, 57, 80, 123, 129, 134, 152, 159, 170, 176, 199, 206, 245, 279, 326, 384, 387, 398, 404, 521, 531, 543, 560, 579, 615, 644, 651, 684, 755, 843, 849, 854, 872, 879, 890, 896, 944, 1024, 1052, 1064, 1070, 1071, 1095, 1350, 1382
Offset: 1
Examples
6 is a term since 6 and 7 are both Lucas-Niven numbers: the minimal Lucas representation of 6, A130310(6) = 1001, has 2 1's and 6 is divisible by 2, and the minimal Lucas representation of 7, A130310(7) = 10000, has one 1 and 7 is divisible by 1.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
lucasNivenQ[n_] := Module[{s = {}, m = n, k = 1}, While[m > 0, If[m == 1, k = 1; AppendTo[s, k]; m = 0, If[m == 2, k = 0; AppendTo[s, k]; m = 0, While[LucasL[k] <= m, k++]; k--; AppendTo[s, k]; m -= LucasL[k]; k = 1]]]; Divisible[n, Plus @@ IntegerDigits[Total[2^s], 2]]]; Select[Range[1400], And @@ lucasNivenQ/@{#, #+1} &]
Comments