A334382 Least k whose set of divisors contains exactly n Pythagorean triples, or 0 if no such k exists.
60, 120, 240, 360, 960, 720, 3840, 1440, 2160, 2880, 8160, 3600, 69360, 8400, 8640, 7200, 32640, 9360, 16800, 14400, 34560, 24480, 130560, 18720, 77760, 54600, 28080, 25200, 67200, 37440, 11045580, 61200, 73440, 97920, 294000, 46800, 65520, 50400, 268800, 109200
Offset: 1
Examples
a(3) = 240 because the set of divisors {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240} contains 3 Pythagorean triples: (3, 4, 5), (6, 8, 10) and (12, 16, 20). The first triple is primitive.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..450
Programs
-
Maple
with(numtheory): for n from 1 to 52 do : ii:=0: for k from 60 by 60 to 10^8 while(ii=0) do: d:=divisors(k):n0:=nops(d):it:=0: for i from 1 to n0-1 do: for j from i+1 to n0-2 do : for m from i+2 to n0 do: if d[i]^2 + d[j]^2 = d[m]^2 then it:=it+1: else fi: od: od: od: if it = n then ii:=1: printf (`%d %d \n`,n,k): else fi: od: od:
Extensions
a(31) from Giovanni Resta, Apr 27 2020
Comments