cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334394 Triangle read by rows: T(n,k) is the number of ordered triples of n-permutations with exactly k common descents, n>=0, 0<=k<=max(0,n-1).

Original entry on oeis.org

1, 1, 7, 1, 163, 52, 1, 8983, 4499, 341, 1, 966751, 660746, 98256, 2246, 1, 179781181, 155729277, 35677082, 2045282, 15177, 1, 53090086057, 55690144728, 17446464519, 1754605504, 42658239, 104952, 1, 23402291822743, 28825420903351, 11518335730323, 1717307782339, 84058424389, 905365701, 739153, 1
Offset: 0

Views

Author

Geoffrey Critzer, Apr 26 2020

Keywords

Comments

An ordered triple of n-permutations ( (a_1,a_2,...,a_n),(b_1,b_2,...,b_n),(c_1,c_2,...,c_n) ) has a common descent at position i, 1<=i<=n-1, if a_i > a_i+1, b_i > b_i+1 and c_i > c_i+1.

Examples

			Triangle begins:
       1;
       1;
       7,      1;
     163,     52,     1;
    8983,   4499,   341,   1;
  966751, 660746, 98256, 2246, 1;
  ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, example 3.18.3e, page 366.

Crossrefs

Cf. A192721, A008292, A212856 (column k=0), A000442 (row sums).

Programs

  • Maple
    T:= (n, k)-> n!^3*coeff(series(coeff(series((y-1)/(y-add((x*
        (y-1))^j/j!^3, j=0..n)), y, k+1), y, k), x, n+1), x, n):
    seq(seq(T(n,k), k=0..max(0, n-1)), n=0..10);  # Alois P. Heinz, Apr 28 2020
  • Mathematica
    nn = 6; e3[x_] := Sum[x^n/n!^3, {n, 0, nn}];Drop[Map[Select[#, # > 0 &] &,
       Table[n!^3, {n, 0, nn}] CoefficientList[Series[(y - 1)/(y - e3[x (y - 1)]), {x, 0, nn}], {x, y}]], 1] // Grid

Formula

Sum_{n>=0} Sum_{k>=0} T(n,k)*y^k*x^n/n!^3 = (y-1)/(y-f(x*(y-1))) where f(z) = Sum_{n>=0} z^n/n!^3.