cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A334402 Decimal expansion of cosh(Pi).

Original entry on oeis.org

1, 1, 5, 9, 1, 9, 5, 3, 2, 7, 5, 5, 2, 1, 5, 2, 0, 6, 2, 7, 7, 5, 1, 7, 5, 2, 0, 5, 2, 5, 6, 0, 1, 3, 7, 6, 9, 5, 7, 7, 0, 9, 1, 7, 1, 7, 6, 2, 0, 5, 4, 2, 2, 5, 3, 8, 2, 1, 2, 8, 8, 3, 0, 4, 8, 4, 6, 2, 6, 9, 6, 5, 5, 8, 2, 2, 3, 7, 3, 5, 3, 7, 5, 6, 0, 7, 5, 5, 5, 9, 7, 8, 5, 1, 4, 7, 2, 5, 1, 5, 2, 0, 3, 1, 4, 8, 4, 7, 5, 5
Offset: 2

Views

Author

Ilya Gutkovskiy, Apr 26 2020

Keywords

Comments

This constant is transcendental.

Examples

			(e^Pi + e^(-Pi))/2 = 11.5919532755215206277517520525601...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Cosh[Pi], 10, 110] [[1]]

Formula

Equals Sum_{k>=0} Pi^(2*k)/(2*k)!.
Equals Product_{k>=0} (1 + 4/(2*k+1)^2).
Equals Product_{k>=1} (k^2 + 4)/(k^2 + 1). - Amiram Eldar, Aug 09 2020

A330864 Decimal expansion of sinh(Pi/2)/2.

Original entry on oeis.org

1, 1, 5, 0, 6, 4, 9, 4, 5, 1, 1, 5, 3, 6, 4, 7, 4, 3, 6, 7, 3, 1, 5, 2, 0, 0, 1, 1, 7, 1, 7, 2, 1, 3, 5, 8, 9, 0, 8, 9, 0, 7, 3, 2, 5, 8, 2, 5, 8, 1, 9, 1, 3, 3, 2, 9, 8, 6, 4, 1, 9, 9, 0, 1, 5, 4, 6, 7, 8, 3, 0, 0, 6, 9, 0, 1, 5, 2, 4, 9, 9, 9, 2, 4, 0, 0, 2, 6, 1, 2, 2, 1, 7, 9, 6, 1, 4, 3, 2, 9, 8, 2, 9, 1, 9, 0, 1, 1, 2, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 28 2020

Keywords

Comments

This constant is transcendental.

Examples

			(1 + 1/2^2) * (1 - 1/3^2) * (1 + 1/4^2) * (1 - 1/5^2) * (1 + 1/6^2) * ... = (e^(Pi/2) - e^(-Pi/2))/4 = 1.15064945115364743673152001...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sinh[Pi/2]/2, 10, 110] [[1]]
  • PARI
    sinh(Pi/2)/2 \\ Michel Marcus, Apr 28 2020

Formula

Equals Sum_{k>=1} Pi^(2*k-1)/(4^k*(2*k-1)!).
Equals Product_{k>=2} (1 + (-1)^k/k^2).
Equals (i^(-i) - i^i)/4, where i is the imaginary unit.

A356479 Decimal expansion of (sqrt(3)/Pi) * sinh(Pi/sqrt(3)).

Original entry on oeis.org

1, 6, 4, 5, 9, 0, 2, 5, 1, 5, 2, 2, 5, 3, 9, 6, 1, 1, 9, 3, 5, 4, 4, 1, 1, 8, 8, 1, 5, 6, 6, 3, 2, 7, 6, 4, 1, 6, 1, 9, 2, 2, 3, 1, 0, 6, 5, 4, 6, 3, 8, 3, 3, 1, 3, 5, 7, 7, 9, 6, 6, 4, 5, 2, 6, 8, 1, 7, 4, 3, 1, 1, 1, 5, 8, 6, 4, 4, 2, 2, 1, 3, 4, 8, 7, 1, 0, 3, 8, 6, 2, 9, 1, 8, 9, 7, 4, 8, 9, 4, 8, 9, 0, 6, 5, 7
Offset: 1

Views

Author

Christoph B. Kassir, Aug 08 2022

Keywords

Examples

			1.6459025152253961193544118815663276416192231065463...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[3]*Sinh[Pi/Sqrt[3]]/Pi, 10, 100][[1]] (* Amiram Eldar, Aug 09 2022 *)
  • PARI
    print((sqrt(3)/Pi) * sinh(Pi/sqrt(3)))

Formula

Equals Product_{k>=1} (1 + 1/(3*k^2)).

A361260 Maximum latitude in degrees of spherical Mercator projection with an aspect ratio of one, arctan(sinh(Pi))*180/Pi.

Original entry on oeis.org

8, 5, 0, 5, 1, 1, 2, 8, 7, 7, 9, 8, 0, 6, 5, 9, 2, 3, 7, 7, 7, 9, 6, 7, 1, 5, 5, 2, 1, 9, 2, 4, 6, 9, 2, 0, 6, 6, 9, 8, 2, 5, 9, 1, 2, 6, 8, 4, 2, 0, 6, 8, 8, 4, 0, 5, 7, 6, 2, 4, 5, 9, 3, 9, 1, 5, 9, 4, 5, 8, 9, 3, 7, 0, 0, 8, 3, 4, 6, 7, 3, 1, 2, 7, 1, 7, 4, 3, 6, 3, 7, 9, 0, 5, 7, 6, 4, 6, 7, 8, 7, 3, 1, 4, 5, 0, 3, 1, 6, 1, 1, 4, 9, 0, 2, 0, 8, 2, 9, 1, 5, 9, 8, 2, 3, 4, 7
Offset: 2

Views

Author

Donghwi Park, Mar 06 2023

Keywords

Comments

Widely used as a cutoff line of web maps which use the web Mercator projection.

Examples

			85.05112877980659237779671552192469206698259126842068...
		

Crossrefs

Cf. A334401.

Programs

  • Mathematica
    RealDigits[ArcTan[Sinh[Pi]]/Degree, 10, 100][[1]] (* Amiram Eldar, Mar 06 2023 *)
  • PARI
    atan(sinh(Pi))*180/Pi \\ Michel Marcus, Mar 06 2023

Formula

Equals arctan(sinh(Pi))*180/Pi.
Equals 360/Pi*arctan(exp(Pi)) - 90.
Showing 1-4 of 4 results.