cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A334257 Triangle read by rows: T(n,k) is the number of ordered pairs of n-permutations with exactly k common double descents, n>=0, 0<=k<=max{0,n-2}.

Original entry on oeis.org

1, 1, 4, 35, 1, 545, 30, 1, 13250, 1101, 48, 1, 463899, 51474, 2956, 70, 1, 22106253, 3070434, 217271, 7545, 96, 1, 1375915620, 229528818, 19372881, 864632, 20322, 126, 1, 108386009099, 21107789247, 2070917370, 113587335, 3530099, 61089, 160, 1
Offset: 0

Views

Author

Geoffrey Critzer, Apr 26 2020

Keywords

Comments

An ordered pair of n-permutations ((a_1,a_2,...,a_n),(b_1,b_2,...,b_n)) has a common double descent at position i, 1<=i<=n-2, if a_i > a_i+1 > a_i+2 and b_i > b_i+1 > b_i+2.

Examples

			T(4,1) = 30:  There are 9 such ordered pairs formed from the permutations 3421,2431,1432.  There are 9 such ordered pairs formed from the permutations 4312,4213,3214.  Then pairing each of these 6 permutations with 4321 gives 12 more ordered pairs with exactly 1 common double descent.  9+9+12 = 30.
Triangle T(n,k) begins:
       1;
       1;
       4;
      35,     1;
     545,    30,    1;
   13250,  1101,   48,  1;
  463899, 51474, 2956, 70, 1;
  ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, example 3.18.3e, page 366.

Crossrefs

Column k=0 gives A334412.

Programs

  • Maple
    b:= proc(n, u, v, t) option remember; expand(`if`(n=0, 1,
          add(add(b(n-1, u-j, v-i, x)*t, i=1..v)+
              add(b(n-1, u-j, v+i-1, 1), i=1..n-v), j=1..u)+
          add(add(b(n-1, u+j-1, v-i, 1), i=1..v)+
              add(b(n-1, u+j-1, v+i-1, 1), i=1..n-v), j=1..n-u)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2, 1)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Apr 26 2020
  • Mathematica
    nn = 8; a = Apply[Plus,Table[Normal[Series[y x^3/(1 - y x - y x^2), {x, 0, nn}]][[n]]/(n +2)!^2, {n, 1, nn - 2}]] /. y -> y - 1; Map[Select[#, # > 0 &] &,
      Range[0, nn]!^2 CoefficientList[Series[1/(1 - x - a), {x, 0, nn}], {x, y}]] // Grid
Showing 1-1 of 1 results.