cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334470 a(n) = Product_{d|n} (A253139(n) / tau(d)) where A253139(n) = lcm_{d|n} tau(d).

Original entry on oeis.org

1, 2, 2, 36, 2, 16, 2, 864, 36, 16, 2, 10368, 2, 16, 16, 6480000, 2, 10368, 2, 10368, 16, 16, 2, 11943936, 36, 16, 864, 10368, 2, 4096, 2, 64800000, 16, 16, 16, 2176782336, 2, 16, 16, 11943936, 2, 4096, 2, 10368, 10368, 16, 2, 1343692800000000, 36, 10368, 16
Offset: 1

Views

Author

Jaroslav Krizek, May 01 2020

Keywords

Examples

			For n = 6; divisors d of 6: {1, 2, 3, 6}; tau(d): {1, 2, 2, 4}; lcm_{d|6} tau(d) = 4; a(6) = 4/1 * 4/2 * 4/2 * 4/4 = 16.
		

Crossrefs

Cf. A334471 (similar sequence with sigma(d)).

Programs

  • Magma
    [&*[ LCM([#Divisors(d): d in Divisors(n)]) / #Divisors(d): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    a[n_] := (LCM @@ (s = DivisorSigma[0, Divisors[n]]))^Length[s] / Times @@ s; Array[a, 51] (* Amiram Eldar, May 02 2020 *)
  • PARI
    a(n) = {my(d=divisors(n), lcmd = lcm(vector(#d, k, numdiv(d[k])))); vecprod(vector(#d, k, lcmd/numdiv(d[k])));} \\ Michel Marcus, May 02 2020

Formula

a(n) = ((lcm_{d|n} tau(d))^tau(n)) / Product_{d|n} tau(d).
a(n) = A253139(n)^A000005(n) / A211776(n).
a(p) = 2 for p = primes (A000040).
a(n) = 2^(k*2^(k-1)) if n is a product of k distinct primes.