cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A334491 a(n) = Product_{d|n} gcd(d, sigma(d)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 24, 1, 2, 3, 1, 1, 18, 1, 4, 1, 2, 1, 288, 1, 2, 1, 56, 1, 216, 1, 1, 3, 2, 1, 72, 1, 2, 1, 40, 1, 72, 1, 8, 9, 2, 1, 1152, 1, 2, 3, 4, 1, 108, 1, 448, 1, 2, 1, 20736, 1, 2, 1, 1, 1, 216, 1, 4, 3, 8, 1, 2592, 1, 2, 3, 8, 1, 72
Offset: 1

Views

Author

Jaroslav Krizek, May 03 2020

Keywords

Examples

			a(6) = gcd(1, sigma(1)) * gcd(2, sigma(2)) * gcd(3, sigma(3)) * gcd(6, sigma(6)) = gcd(1, 1) * gcd(2, 3) * gcd(3, 4) * gcd(6, 12) = 1 * 1 * 1 * 6 = 6.
		

Crossrefs

Cf. A334490 (Sum_{d|n} gcd(d, sigma(d))), A007955 (pod(n) = Product_{d|n} gcd(d, pod(d))).
Cf. A000040, A000203 (sigma(n)), A009194.

Programs

  • Magma
    [&*[GCD(d, &+Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    a[n_] := Product[GCD[d, DivisorSigma[1, d]], {d, Divisors[n]}]; Array[a, 80] (* Amiram Eldar, May 03 2020 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, gcd(d[k], sigma(d[k]))); \\ Michel Marcus, May 03-11 2020

Formula

a(p) = 1 for p = primes (A000040).
a(n) = Product_{d|n} A009194(d). - Antti Karttunen, May 09 2020

A334579 a(n) = Sum_{d|n} gcd(tau(d), sigma(d)).

Original entry on oeis.org

1, 2, 3, 3, 3, 8, 3, 4, 4, 6, 3, 11, 3, 8, 9, 5, 3, 12, 3, 13, 9, 8, 3, 16, 4, 6, 8, 11, 3, 24, 3, 8, 9, 6, 9, 16, 3, 8, 9, 16, 3, 26, 3, 15, 16, 8, 3, 19, 6, 10, 9, 9, 3, 24, 9, 20, 9, 6, 3, 45, 3, 8, 12, 9, 9, 26, 3, 13, 9, 24, 3, 24, 3, 6, 12, 11, 9, 24, 3
Offset: 1

Views

Author

Jaroslav Krizek, May 06 2020

Keywords

Comments

Inverse Möbius transform of A009205. - Antti Karttunen, May 19 2020

Examples

			a(6) = gcd(tau(1), sigma(1)) + gcd(tau(2), sigma(2)) + gcd(tau(3), sigma(3)) + gcd(tau(6), sigma(6)) = gcd(1, 1) + gcd(2, 3) + gcd(2, 4) + gcd(4, 12) = 1 + 1 + 2 + 4 = 8.
		

Crossrefs

Cf. A322979 (Sum_{d|n} gcd(d, tau(d))), A334490 (Sum_{d|n} gcd(d, sigma(d))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A009205 (gcd(tau(n), sigma(n))).
Cf. A334729 (with product, instead of sum).

Programs

  • Magma
    [&+[GCD(#Divisors(d), &+Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    a[n_] := DivisorSum[n, GCD[DivisorSigma[0, #], DivisorSigma[1, #]] &]; Array[a, 100] (* Amiram Eldar, May 07 2020 *)
  • PARI
    a(n) = sumdiv(n, d, gcd(numdiv(d), sigma(d))); \\ Michel Marcus, May 07 2020

Formula

a(p) = 3 for p = odd primes (A065091).

A334783 a(n) = Sum_{d|n} lcm(d, sigma(d)).

Original entry on oeis.org

1, 7, 13, 35, 31, 31, 57, 155, 130, 127, 133, 143, 183, 231, 163, 651, 307, 382, 381, 575, 741, 535, 553, 383, 806, 735, 1210, 315, 871, 631, 993, 2667, 673, 1231, 1767, 3770, 1407, 1527, 2379, 1055, 1723, 1599, 1893, 1487, 1450, 2215, 2257, 2367, 2850, 5552
Offset: 1

Views

Author

Jaroslav Krizek, May 10 2020

Keywords

Examples

			a(6) = lcm(1, sigma(1)) + lcm(2, sigma(2)) + lcm(3, sigma(3)) + lcm(6, sigma(6)) = lcm(1, 1) + lcm(2, 3) + lcm(3, 4) + lcm(6, 12) = 1 + 6 + 12 + 12 = 31.
		

Crossrefs

Cf. A334490 (Sum_{d|n} gcd(d, sigma(d))), A334782 (Sum_{d|n} lcm(d, tau(d))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A009242 (lcm(n, sigma(n))).

Programs

  • Magma
    [&+[LCM(d, &+Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N):
    for d from 1 to N do
      t:= ilcm(d,numtheory:-sigma(d));
      R:= [seq(i,i=d..N,d)];
      V[R]:= V[R] +~ t;
    od:
    convert(V,list); # Robert Israel, May 13 2020
  • Mathematica
    a[n_] := DivisorSum[n, LCM[#, DivisorSigma[1, #]] &]; Array[a, 100] (* Amiram Eldar, May 10 2020 *)
  • PARI
    a(n) = sumdiv(n, d, lcm(d, sigma(d))); \\ Michel Marcus, May 10 2020

Formula

a(p) = p^2 + p + 1 for p = primes (A000040).
Showing 1-3 of 3 results.