A334509 Eventual period of a single cell in rule 41 cellular automaton in a cyclic universe of width n.
2, 2, 2, 2, 15, 2, 28, 8, 36, 20, 44, 12, 52, 28, 60, 16, 68, 36, 76, 20, 84, 44, 92, 24, 100, 52, 108, 28, 116, 60, 124, 32, 132, 68, 140, 36, 148, 76, 156, 40, 164, 84, 172, 44, 180, 92, 188, 48, 196, 100, 204, 52, 212, 108, 220, 56, 228, 116, 236, 60, 244, 124
Offset: 1
Keywords
References
- Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020.
Links
- Wolfram Research, Rule 41 - Wolfram Atlas of Simple Programs
Programs
-
Mathematica
Table[-Subtract @@ Flatten[Map[Position[#, #[[-1]]] &, NestWhileList[CellularAutomaton[41], Prepend[Table[0, {n - 1}], 1], Unequal, All], {0}]],{n,62}] (* Stefano Spezia, Oct 04 2021, after Ben Branman in A180001 *)
Formula
Conjectures from Colin Barker, May 09 2020: (Start)
G.f.: x*(2 + 2*x + 2*x^2 + 2*x^3 + 11*x^4 - 2*x^5 + 24*x^6 + 4*x^7 + 8*x^8 + 18*x^9 - 10*x^10 - 2*x^11 - 5*x^12 - 10*x^13) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2).
a(n) = 2*a(n-4) - a(n-8) for n > 14. (End)
Conjecture: a(n) = n*A176895(n) for n > 6. - Stefano Spezia, Oct 03 2021
Extensions
More terms from Jinyuan Wang, May 09 2020
Comments