cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A376935 Array read by antidiagonals: T(n,k) is the number of 2*n X 2*k binary matrices with all row sums k and column sums n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 20, 90, 20, 1, 1, 70, 1860, 1860, 70, 1, 1, 252, 44730, 297200, 44730, 252, 1, 1, 924, 1172556, 60871300, 60871300, 1172556, 924, 1, 1, 3432, 32496156, 14367744720, 116963796250, 14367744720, 32496156, 3432, 1, 1, 12870, 936369720, 3718394156400, 273957842462220, 273957842462220, 3718394156400, 936369720, 12870, 1
Offset: 0

Views

Author

Andrew Howroyd, Oct 11 2024

Keywords

Comments

T(n,k) is the number of 2*n X 2*k {-1,1} matrices with all rows and columns summing to zero.

Examples

			Array begins:
========================================================================
n\k | 0   1       2           3               4                   5 ...
----+------------------------------------------------------------------
  0 | 1   1       1           1               1                   1 ...
  1 | 1   2       6          20              70                 252 ...
  2 | 1   6      90        1860           44730             1172556 ...
  3 | 1  20    1860      297200        60871300         14367744720 ...
  4 | 1  70   44730    60871300    116963796250     273957842462220 ...
  5 | 1 252 1172556 14367744720 273957842462220 6736218287430460752 ...
  ...
		

Crossrefs

Main diagonal is A058527.
Cf. A008300, A195644, A333901, A334549, A377007 (up to permutations of rows and columns).

Programs

  • PARI
    T(n, k)={
      local(M=Map(Mat([2*k, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(i, p, v, e) = if(i<0, if(!e, acc(p, v)), my(t=polcoef(p,i)); for(j=0, min(t, e), self()(i-1, p+j*(x-1)*x^i, binomial(t, j)*v, e-j))));
      for(r=1, 2*n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n-1, src[i, 1], src[i, 2], k))); vecsum(Mat(M)[,2]);
    }

Formula

T(n,k) = T(k,n).

A172634 Number of n X 3 0..2 arrays with row sums 3 and column sums n.

Original entry on oeis.org

1, 1, 7, 31, 175, 991, 5881, 35617, 219871, 1376095, 8710537, 55644337, 358198369, 2320792657, 15120204295, 98984058271, 650725327231, 4293779332927, 28425752310361, 188739799967425, 1256510215733185, 8385127334900305, 56078904057164215, 375796823748323215
Offset: 0

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Comments

Inverse binomial transform of the Franel numbers (A000172). - Paul D. Hanna, Feb 26 2012
a(n) is the constant term in the expansion of (1 + x + y + 1/x + 1/y + x/y + y/x)^n. - Seiichi Manyama, Oct 26 2019
a(n) is the constant term in the expansion of (-1 + (1 + x) * (1 + y) + (1 + 1/x) * (1 + 1/y))^n. - Seiichi Manyama, Oct 27 2019
a(n) is the number of n step closed walks on the hexagonal lattice with loops at each node. A step along a loop leaves the position unchanged. The bijection is as follows: after subtracting 1 from each element in the array, values are -1, 0 or 1 and row and column sums are zero. There are only seven possibilities for each row. An all zero row corresponds with a step along the loop leaving the position unchanged and the others to a unit step in each of the six possible directions. This justifies that this sequence is the binomial transform of A002898. - Andrew Howroyd, May 09 2020

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 31*x^3 + 175*x^4 + 991*x^5 + 5881*x^6 +...
G.f.: A(x) = 1/(1-x) + 6*x^2*(1+x)/(1-x)^4 + 90*x^4*(1+x)^2/(1-x)^7 + 1680*x^6*(1+x)^3/(1-x)^10 + 34650*x^8*(1+x)^4/(1-x)^13 +...+ A006480(n)*x^(2*n)*(1+x)^n/(1-x)^(3*n+1) +...
		

Crossrefs

Column k=3 of A328747 and A334549.

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[(3*k)!/k!^3*x^(2*k)*(1+x)^k/(1-x)^(3*k+1),{k,0,n}],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3*x^(2*m)*(1+x)^m/(1-x + x*O(x^n))^(3*m+1)),n)} \\ Paul D. Hanna, Feb 26 2012
    
  • PARI
    a(n)={sum(i=0, n, sum(j=0, i, (-1)^(n-i)*binomial(n, i)*binomial(i, j)^3))} \\ Andrew Howroyd, May 09 2020

Formula

From Paul D. Hanna, Feb 26 2012: (Start)
G.f.: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)*(1+x)^n / (1-x)^(3*n+1).
Equals the binomial transform of A002898.
a(n) = Sum_{k=0..n} (-1)^(n+k) * binomial(n, k) * A000172(k), where A000172(k) = Sum_{j=0..k} binomial(k,j)^3 forms the Franel numbers.
(End)
Recurrence: n^2*a(n) = (2*n-1)^2*a(n-1) + 19*(n-1)^2*a(n-2) + 14*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 7^(n+1)*sqrt(3)/(12*Pi*n). - Vaclav Kotesovec, Oct 20 2012
G.f.: hypergeom([1/3, 1/3],[1],-27*x*(x+1)^2/((1-7*x)^2*(1+2*x)))/((1+2*x)^(1/3)*(1-7*x)^(2/3)). - Mark van Hoeij, May 07 2013

Extensions

a(0)=1 prepended by Andrew Howroyd, May 09 2020

A377063 Array read by antidiagonals: T(n,k) is the number of {-1,0,1} n X k matrices with all rows and columns summing to zero up to permutations of rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 10, 6, 3, 1, 1, 1, 1, 26, 30, 12, 3, 1, 1, 1, 1, 71, 166, 117, 18, 4, 1, 1, 1, 1, 197, 981, 1421, 345, 30, 4, 1, 1, 1, 1, 554, 5937, 20326, 9691, 1042, 42, 5, 1, 1, 1, 1, 1570, 36646, 307063, 336596, 63076, 2746, 63, 5, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Oct 14 2024

Keywords

Comments

Columns are not permutable.
Equivalently, the number of n X k 0..2 arrays with row sums k and column sums n up to permutations of rows.

Examples

			Array begins:
===================================================
n\k | 0 1 2  3    4      5        6           7 ...
----+----------------------------------------------
  0 | 1 1 1  1    1      1        1           1 ...
  1 | 1 1 1  1    1      1        1           1 ...
  2 | 1 1 2  4   10     26       71         197 ...
  3 | 1 1 2  6   30    166      981        5937 ...
  4 | 1 1 3 12  117   1421    20326      307063 ...
  5 | 1 1 3 18  345   9691   336596    12650093 ...
  6 | 1 1 4 30 1042  63076  5328136   506525279 ...
  7 | 1 1 4 42 2746 369036 76292516 18490880339 ...
  ...
		

Crossrefs

Main diagonal is A377064.
Rows n=0..4 are A000012, A000012, A257520, A377065, A377066.
Columns k=0..4 are A000012, A000012, A008619, A377067, A377068.
Cf. A334549.

A172645 Number of n X n 0..2 arrays with row sums n and column sums n.

Original entry on oeis.org

1, 3, 31, 2371, 1084851, 3680774301, 91358224634433, 17470072106054582211, 26088526624958727703324771, 310419652143758898175543447421953, 29785621316391113552729016416250323294253
Offset: 1

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Crossrefs

Main diagonal of A334549.

A172635 Number of n X 14 0..2 arrays with row sums 14 and column sums n.

Original entry on oeis.org

1, 616227, 15120204295, 2411829493241299, 358060848206529563811, 75490918169569448369461821, 17949532724881770551236183389177, 4867117722741777809293028167592172435
Offset: 1

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Crossrefs

Column k=14 of A334549.

A172636 Number of n X 7 0..2 arrays with row sums 7 and column sums n.

Original entry on oeis.org

1, 393, 35617, 7343449, 1509893001, 360255871641, 91358224634433, 24567498558526617, 6887820148172502169, 1998635481349606292593, 596268326872362183077193, 182062424087215419645579529
Offset: 1

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Crossrefs

Column k=7 of A334549.

A172637 Number of n X 10 0..2 arrays with row sums 10 and column sums n.

Original entry on oeis.org

1, 8953, 8710537, 30189264889, 101471705778601, 431222728237019041, 1998635481349606292593, 10132345044562368521279737, 54649595712626140857519780409, 310419652143758898175543447421953
Offset: 1

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Crossrefs

Column k=10 of A334549.

A172638 Number of n X 8 0..2 arrays with row sums 8 and column sums n.

Original entry on oeis.org

1, 1107, 219871, 115321795, 59794281891, 37015866368181, 24567498558526617, 17470072106054582211, 13039980402350138484115, 10132345044562368521279737, 8132104885895774387439086637, 6705797924085107855686463036869
Offset: 1

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Crossrefs

Column k=8 of A334549.

A172640 Number of n X 12 0..2 arrays with row sums 12 and column sums n.

Original entry on oeis.org

1, 73789, 358198369, 8365213132981, 185658731463324901, 5520471267708881730181, 182062424087215419645579529, 6705797924085107855686463036869, 266324891937340036349722115366403541
Offset: 1

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Crossrefs

Column k=12 of A334549.

A172641 Number of n X 9 0..2 arrays with row sums 9 and column sums n.

Original entry on oeis.org

1, 3139, 1376095, 1849858771, 2435292751411, 3938448319935781, 6887820148172502169, 13039980402350138484115, 26088526624958727703324771, 54649595712626140857519780409, 118790606468949916540947848175709
Offset: 1

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Crossrefs

Column k=9 of A334549.
Showing 1-10 of 12 results. Next