A334551 Number of fixed polyominoes with 2n-1 cells and width and height both equal to n.
1, 4, 25, 120, 497, 1924, 7265, 27288, 102745, 388692, 1477721, 5643064, 21632785, 83204260, 320932177, 1240939448, 4808642313, 18668848852, 72601081385, 282762109272, 1102772229313, 4306062994148, 16832791708257, 65867445819160, 257980829463017
Offset: 1
Keywords
Examples
a(3) = 25. Up to rotation and reflection there are 6 possibilities: X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- Andrew Conway, Enumerating 2D percolation series by the finite-lattice method: theory, J. Phys. A: Math. Gen., 28 (1995), 335-349. See Table 4.
Programs
-
Mathematica
Array[8Binomial[2(#-1),#-1]-3#^2+4#-8&,50] (* Paolo Xausa, Dec 21 2023 *)
-
PARI
a(n) = 8*binomial(2*(n-1), n-1) - 3*n^2 + 4*n - 8; \\ Peter J. Taylor, Dec 15 2020
Formula
a(n) = 2*binomial(2*(n-1), n-1) + 4*(n-2) + (n-2)^2*(2*n-5) + 2*Sum_{i=1..n-2} Sum_{j=1..n-2} ((n-2-i)*(n-2-j)+2)*binomial(i+j, i) for n > 1.
a(n) = 8*binomial(2*(n-1), n-1) - 3*n^2 + 4*n - 8. - Peter J. Taylor, Dec 15 2020
From Stefano Spezia, Sep 02 2022: (Start)
G.f.: 8*x/sqrt(1 - 4*x) - (8 - 17*x + 15*x^2)/(1 - x)^3.
a(n) ~ 2^(2*n+1)/sqrt(n*Pi). (End)
Comments