cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334551 Number of fixed polyominoes with 2n-1 cells and width and height both equal to n.

Original entry on oeis.org

1, 4, 25, 120, 497, 1924, 7265, 27288, 102745, 388692, 1477721, 5643064, 21632785, 83204260, 320932177, 1240939448, 4808642313, 18668848852, 72601081385, 282762109272, 1102772229313, 4306062994148, 16832791708257, 65867445819160, 257980829463017
Offset: 1

Views

Author

Andrew Howroyd, Jun 06 2020

Keywords

Comments

A polyomino with width and height equal to n must have at least 2n-1 cells.

Examples

			a(3) = 25. Up to rotation and reflection there are 6 possibilities:
       X       X   X         X         X     X
       X     X X   X X X   X X X   X X X   X X X
   X X X   X X     X       X       X         X
		

Crossrefs

Main diagonal of A334552.
Cf. A268404.

Programs

  • Mathematica
    Array[8Binomial[2(#-1),#-1]-3#^2+4#-8&,50] (* Paolo Xausa, Dec 21 2023 *)
  • PARI
    a(n) = 8*binomial(2*(n-1), n-1) - 3*n^2 + 4*n - 8; \\ Peter J. Taylor, Dec 15 2020

Formula

a(n) = 2*binomial(2*(n-1), n-1) + 4*(n-2) + (n-2)^2*(2*n-5) + 2*Sum_{i=1..n-2} Sum_{j=1..n-2} ((n-2-i)*(n-2-j)+2)*binomial(i+j, i) for n > 1.
a(n) = 8*binomial(2*(n-1), n-1) - 3*n^2 + 4*n - 8. - Peter J. Taylor, Dec 15 2020
From Stefano Spezia, Sep 02 2022: (Start)
G.f.: 8*x/sqrt(1 - 4*x) - (8 - 17*x + 15*x^2)/(1 - x)^3.
a(n) ~ 2^(2*n+1)/sqrt(n*Pi). (End)