cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A334552 Array read by antidiagonals: T(m,n) is the number of fixed polyominoes that have a width of m and height of n and m + n - 1 cells.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 12, 25, 12, 1, 1, 16, 50, 50, 16, 1, 1, 20, 83, 120, 83, 20, 1, 1, 24, 124, 230, 230, 124, 24, 1, 1, 28, 173, 388, 497, 388, 173, 28, 1, 1, 32, 230, 602, 932, 932, 602, 230, 32, 1, 1, 36, 295, 880, 1591, 1924, 1591, 880, 295, 36, 1
Offset: 1

Views

Author

Andrew Howroyd, Jun 06 2020

Keywords

Comments

A polyomino with a width of m and height of n must have at least m + n - 1 cells.

Examples

			Array begins:
=====================================================
m\n | 1  2   3    4    5     6     7     8      9
----+------------------------------------------------
  1 | 1  1   1    1    1     1     1     1      1 ...
  2 | 1  4   8   12   16    20    24    28     32 ...
  3 | 1  8  25   50   83   124   173   230    295 ...
  4 | 1 12  50  120  230   388   602   880   1230 ...
  5 | 1 16  83  230  497   932  1591  2538   3845 ...
  6 | 1 20 124  388  932  1924  3588  6212  10156 ...
  7 | 1 24 173  602 1591  3588  7265 13582  23859 ...
  8 | 1 28 230  880 2538  6212 13582 27288  51290 ...
  9 | 1 32 295 1230 3845 10156 23859 51290 102745 ...
  ...
		

Crossrefs

Columns 2..3 are A008574(n-1), A164754(n+1).
Main diagonal is A334551.
Cf. A292357.

Programs

  • Mathematica
    A334552[m_,n_]:=Max[1,8Binomial[m+n-2,m-1]-3m*n+2m+2n-8];
    Table[A334552[m-n+1,n],{m,15},{n,m}] (* Paolo Xausa, Dec 20 2023 *)
  • PARI
    T(m, n)={if(m==1||n==1, 1, 8*binomial(m+n-2, m-1) - 3*m*n + 2*m + 2*n - 8)} \\ Andrew Howroyd, Dec 30 2020, after Peter J. Taylor

Formula

T(m,n) = 2*binomial(m+n-2, m-1) + 2*(m+n-4) + (m-2)*(n-2)*(m+n-5) + 2*Sum_{i=1..m-2} Sum_{j=1..n-2} ((m-2-i)*(n-2-j)+2)*binomial(i+j,i) for m > 1, n > 1.
T(m,n) = max(1, 8*binomial(m+n-2, m-1) - 3*m*n + 2*m + 2*n - 8). - Peter J. Taylor, Dec 15 2020

A356888 a(n) = ((n-1)^2 + 2)*2^(n-2).

Original entry on oeis.org

1, 3, 12, 44, 144, 432, 1216, 3264, 8448, 21248, 52224, 125952, 299008, 700416, 1622016, 3719168, 8454144, 19070976, 42729472, 95158272, 210763776, 464519168, 1019215872, 2227175424, 4848615424, 10519314432, 22749904896, 49056579584, 105495134208, 226291089408
Offset: 1

Views

Author

Jack Hanke, Sep 02 2022

Keywords

Comments

a(n) is the number of fixed polyiamonds of minimal area 2*n-1 that touch each side of a triangle formed in the triangular lattice. n designates the number of triangles that touch each side of the larger triangle.

Examples

			a(3) = 12. Up to rotations and reflections there are 3 possibilities.
           *                     *                     *
          / \                   / \                   / \
         /   \                 /   \                 /   \
        *-----*               *-----*               *-----*
       / \   / \             / \   /#\             /#\   /#\
      /   \ /   \           /   \ /###\           /###\ /###\
     *-----*-----*         *-----*-----*         *-----*-----*
    /#\###/#\###/#\       /#\###/#\###/ \       / \###/#\###/ \
   /###\#/###\#/###\     /###\#/###\#/   \     /   \#/###\#/   \
  *-----*-----*-----*   *-----*-----*-----*   *-----*-----*-----*
		

Crossrefs

Cf. A334551.

Programs

  • Mathematica
    A356888[n_] := ((n-1)^2 + 2)*2^(n-2); Array[A356888, 30] (* or *)
    LinearRecurrence[{6, -12, 8}, {1, 3, 12}, 30] (* Paolo Xausa, Oct 07 2024 *)

Formula

G.f.: -x*(6*x^2-3*x+1)/(2*x-1)^3.
E.g.f.: (exp(2*x)*(3 - 2*x + 4*x^2) - 3)/4. - Stefano Spezia, Sep 02 2022

A356889 a(n) = (n^2 + 3*n + 10/3)*4^(n-3) - 1/3.

Original entry on oeis.org

3, 21, 125, 693, 3669, 18773, 93525, 456021, 2184533, 10310997, 48059733, 221599061, 1012225365, 4585772373, 20624790869, 92162839893, 409453548885, 1809612887381, 7960006055253, 34863681197397, 152099108509013, 661172992169301, 2864594294232405, 12373170851239253
Offset: 2

Views

Author

Jack Hanke, Sep 02 2022

Keywords

Comments

a(n) is the number of fixed polyforms of minimal area (2*n)-1 that contain at least one triangle that touches each side of a triangle formed on a Kagome (trihexagonal) lattice. n is the number of triangles that touch each side of the larger triangle.

Examples

			a(3) = 21. Up to rotations and reflections, there are 5 possibilities:
.
            *                      *                      *
           / \                    / \                    / \
          *---*                  *---*                  *---*
         /     \                /     \                /     \
        *       *              *       *              *       *
       / \     / \            / \     / \            / \     /#\
      *---*---*---*          *---*---*---*          *---*---*---*
     /#####\ /#####\        /#####\#/#####\        /#####\ /#####\
    *#######*#######*      *#######*#######*      *#######*#######*
   /#\#####/#\#####/#\    /#\#####/ \#####/#\    /#\#####/#\#####/ \
  *---*---*---*---*---*  *---*---*---*---*---*  *---*---*---*---*---*
.
            *                      *
           / \                    / \
          *---*                  *---*
         /     \                /     \
        *       *              *       *
       /#\     /#\            / \     /#\
      *---*---*---*          *---*---*---*
     /#####\ /#####\        /#####\#/#####\
    *#######*#######*      *#######*#######*
   / \#####/#\#####/ \    /#\#####/ \#####/ \
  *---*---*---*---*---*  *---*---*---*---*---*
		

Crossrefs

Cf. A334551.

Programs

  • Mathematica
    Table[(n^2 + 3*n + 10/3)*4^(n-3) - 1/3, {n,2,25}] (* James C. McMahon, Jan 03 2024 *)

Formula

G.f.: x^2*(3 - 18*x + 32*x^2 - 8*x^3)/((1 - x)*(1 - 4*x)^3). - adapted to the offset by Stefano Spezia, Sep 03 2022
From Stefano Spezia, Sep 03 2022: (Start)
a(n) = (4^n*(10 + 3*n*(3 + n)) - 64)/192.
a(n) = 13*a(n-1) - 60*a(n-2) + 112*a(n-3) - 64*a(n-4) for n > 5. (End)
Showing 1-3 of 3 results.