A334579 a(n) = Sum_{d|n} gcd(tau(d), sigma(d)).
1, 2, 3, 3, 3, 8, 3, 4, 4, 6, 3, 11, 3, 8, 9, 5, 3, 12, 3, 13, 9, 8, 3, 16, 4, 6, 8, 11, 3, 24, 3, 8, 9, 6, 9, 16, 3, 8, 9, 16, 3, 26, 3, 15, 16, 8, 3, 19, 6, 10, 9, 9, 3, 24, 9, 20, 9, 6, 3, 45, 3, 8, 12, 9, 9, 26, 3, 13, 9, 24, 3, 24, 3, 6, 12, 11, 9, 24, 3
Offset: 1
Keywords
Examples
a(6) = gcd(tau(1), sigma(1)) + gcd(tau(2), sigma(2)) + gcd(tau(3), sigma(3)) + gcd(tau(6), sigma(6)) = gcd(1, 1) + gcd(2, 3) + gcd(2, 4) + gcd(4, 12) = 1 + 1 + 2 + 4 = 8.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Crossrefs
Programs
-
Magma
[&+[GCD(#Divisors(d), &+Divisors(d)): d in Divisors(n)]: n in [1..100]]
-
Mathematica
a[n_] := DivisorSum[n, GCD[DivisorSigma[0, #], DivisorSigma[1, #]] &]; Array[a, 100] (* Amiram Eldar, May 07 2020 *)
-
PARI
a(n) = sumdiv(n, d, gcd(numdiv(d), sigma(d))); \\ Michel Marcus, May 07 2020
Formula
a(p) = 3 for p = odd primes (A065091).
Comments