cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A334608 a(n) is the total number of down-steps after the final up-step in all 3_1-Dyck paths of length 4*n (n up-steps and 3n down-steps).

Original entry on oeis.org

0, 5, 34, 236, 1714, 12922, 100300, 796572, 6443536, 52909593, 439896626, 3695917940, 31331587252, 267669458420, 2302188456120, 19918434257052, 173240112503520, 1513821095788420, 13283883136738344, 117009704490121520, 1034217260142108570, 9169842145476773250, 81537271617856588380
Offset: 0

Views

Author

Andrei Asinowski, May 13 2020

Keywords

Comments

A 3_1-Dyck path is a lattice path with steps U=(1, 3), d=(1, -1) that starts at (0,0), stays (weakly) above y=-1, and ends at the x-axis.

Examples

			For n=1, a(1)=5 is the total number of down-steps after the last up-step in Uddd, dUdd.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 2 * Binomial[4*n + 6, n + 1]/(4*n + 6) - 4 * Binomial[4*n + 2, n]/(4*n + 2); Array[a, 23, 0] (* Amiram Eldar, May 13 2020 *)
  • SageMath
    [2*binomial(4*(n + 1) + 2, n + 1)/(4*(n + 1) + 2) - 4*binomial(4*n + 2, n)/(4*n + 2) for n in srange(30)] # Benjamin Hackl, May 13 2020

Formula

a(n) = 2*binomial(4*(n+1)+2, n+1)/(4*(n+1)+2) - 4*binomial(4*n+2, n)/(4*n+2).

A334650 a(n) is the total number of down steps between the first and second up steps in all 3_2-Dyck paths of length 4*n.

Original entry on oeis.org

0, 6, 31, 158, 975, 6639, 48050, 362592, 2820789, 22460120, 182141553, 1499143282, 12490923757, 105150960654, 892973346300, 7640934031920, 65813450140017, 570160918044288, 4964875184429660, 43431741548248440, 381496856026500220, 3363457643008999635
Offset: 0

Views

Author

Benjamin Hackl, May 13 2020

Keywords

Comments

A 3_2-Dyck path is a lattice path with steps (1, 3), (1, -1) that starts and ends at y = 0 and stays above the line y = -2.
For n = 1, there is no 2nd up step, a(1) = 6 enumerates the total number of down steps between the 1st up step and the end of the path.

Examples

			For n = 1, the 3_2-Dyck paths are DDUD, DUDD, UDDD. This corresponds to a(1) = 1 + 2 + 3 = 6 down steps between the 1st up step and the end of the path.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := 3 * Binomial[4*n, n]/(n + 1) - Binomial[4*n + 2, n]/(n + 1) + 9 * Binomial[4*(n - 1), n - 1]/n - 6 * Boole[n == 1]; Array[a, 22, 0] (* Amiram Eldar, May 13 2020 *)
  • SageMath
    [3*binomial(4*n, n)/(n + 1) - binomial(4*n + 2, n)/(n + 1) + 9*binomial(4*(n - 1), n - 1)/n - 6*(n==1) if n > 0 else 0 for n in srange(30)] # Benjamin Hackl, May 13 2020

Formula

a(0) = 0 and a(n) = 3*binomial(4*n, n)/(n+1) - binomial(4*n+2, n)/(n+1) + 9*binomial(4*(n-1), n-1)/n - 6*[n=1] for n > 0, where [ ] is the Iverson bracket.
Showing 1-2 of 2 results.