A334640 a(n) is the total number of down steps between the 2nd and 3rd up steps in all 2-Dyck paths of length 3*n. A 2-Dyck path is a nonnegative lattice path with steps (1, 2), (1, -1) that starts and ends at y = 0.
0, 0, 9, 19, 72, 324, 1595, 8307, 44982, 250648, 1427679, 8274825, 48644310, 289334160, 1738043892, 10529070020, 64252519830, 394601627376, 2437058926871, 15126463230165, 94306717535940, 590318477063700, 3708527622652755, 23374587898663155, 147770791807427880
Offset: 0
Examples
For n = 2, there are the 2-Dyck paths UUDDDD, UDUDDD, UDDUDD. Between the 2nd up step and the end of the path there are a(2) = 4 + 3 + 2 = 9 down steps in total.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1212
- A. Asinowski, B. Hackl, and S. Selkirk, Down step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.
Programs
-
Maple
b:= proc(x, y, u, c) option remember; `if`(x=0, c, `if`(y+2
0, b(x-1, y-1, u, c+`if`(u=2, 1, 0)), 0)) end: a:= n-> b(3*n, 0$3): seq(a(n), n=0..24); # Alois P. Heinz, May 09 2020 # second Maple program: a:= proc(n) option remember; `if`(n<3, [0$2, 9][n+1], (3*(n-1)*(3*n-8)*(3*n-7)*(13*n-20)*a(n-1))/ (2*(13*n-33)*(n-2)*(2*n-3)*n)) end: seq(a(n), n=0..24); # Alois P. Heinz, May 09 2020 -
Mathematica
a[0] = a[1] = 0; a[n_] := 2 * Sum[Binomial[3*j + 1, j] * Binomial[3*(n - j), n - j]/((3*j + 1)*(n - j + 1)), {j, 1, 2}]; Array[a, 25, 0] (* Amiram Eldar, May 09 2020 *)
-
PARI
a(n) = if (n<=1, 0, 2*sum(j=1, 2, binomial(3*j+1,j) * binomial(3*(n-j),n-j)/((3*j+1)*(n-j+1)))); \\ Michel Marcus, May 09 2020
Formula
a(0) = a(1) = 0 and a(n) = 2*Sum_{j=1..2} binomial(3*j+1,j) * binomial(3*(n-j),n-j) / ((3*j+1)*(n-j+1)) for n > 1.
Comments