cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334664 a(n) = Product_{d|n} gcd(d, tau(d)).

Original entry on oeis.org

1, 2, 1, 2, 1, 4, 1, 8, 3, 4, 1, 24, 1, 4, 1, 8, 1, 72, 1, 8, 1, 4, 1, 768, 1, 4, 3, 8, 1, 16, 1, 16, 1, 4, 1, 3888, 1, 4, 1, 256, 1, 16, 1, 8, 9, 4, 1, 1536, 1, 8, 1, 8, 1, 144, 1, 256, 1, 4, 1, 2304, 1, 4, 9, 16, 1, 16, 1, 8, 1, 16, 1, 1492992, 1, 4, 3, 8, 1
Offset: 1

Views

Author

Jaroslav Krizek, May 07 2020

Keywords

Examples

			a(6) = gcd(1, tau(1)) * gcd(2, tau(2)) * gcd(3, tau(3)) * gcd(6, tau(6)) = gcd(1, 1) * gcd(2, 2) * gcd(3, 2) * gcd(6, 4) = 1 * 2 * 1 * 2 = 4.
		

Crossrefs

Cf. A322979 (Sum_{d|n} gcd(d, tau(d))), A334491 (Product_{d|n} gcd(d, sigma(d))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A009191 (gcd(n, tau(n))).

Programs

  • Magma
    [&*[GCD(d, #Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    Table[Times@@GCD[Divisors[n],DivisorSigma[0,Divisors[n]]],{n,80}] (* Harvey P. Dale, Mar 30 2024 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, gcd(d[k], numdiv(d[k]))); \\ Michel Marcus, May 08-11 2020

Formula

a(p) = 1 for p = odd primes (A065091).