cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334731 a(n) = Product_{d|n} gcd(sigma(d), pod(d)) where sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 1, 1, 1, 1, 12, 1, 1, 1, 2, 1, 48, 1, 4, 3, 1, 1, 36, 1, 4, 1, 4, 1, 576, 1, 2, 1, 224, 1, 5184, 1, 1, 3, 2, 1, 144, 1, 4, 1, 40, 1, 2304, 1, 16, 9, 4, 1, 2304, 1, 2, 9, 4, 1, 864, 1, 1792, 1, 2, 1, 995328, 1, 4, 1, 1, 1, 20736, 1, 4, 3, 128, 1, 5184, 1, 2
Offset: 1

Views

Author

Jaroslav Krizek, May 09 2020

Keywords

Examples

			a(6) = gcd(sigma(1), pod(1)) * gcd(sigma(2), pod(2)) * gcd(sigma(3), pod(3)) * gcd(sigma(6), pod(6)) = gcd(1, 1) * gcd(3, 2) * gcd(4, 3) * gcd(12, 36) = 1 * 1 * 1 * 12 = 12.
		

Crossrefs

Cf. A334729 (Product_{d|n} gcd(tau(d), sigma(d))), A334663 (Sum_{d|n} gcd(sigma(d), pod(d))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A306682 (gcd(sigma(n), pod(n))).

Programs

  • Magma
    [&*[GCD(&+Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    a[n_] := Product[GCD[DivisorSigma[1, d], d^(DivisorSigma[0, d]/2)], {d, Divisors[n]}]; Array[a, 100] (* Amiram Eldar, May 09 2020 *)
  • PARI
    pod(n) = vecprod(divisors(n));
    a(n) = my(d=divisors(n)); prod(k=1, #d, gcd(sigma(d[k]), pod(d[k]))); \\ Michel Marcus, May 09-11 2020

Formula

a(p) = 1 for p = primes (A000040).