cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A166604 Numbers k such that Sum_{i=1..k} i^4 divides Product_{i=1..k} i^4.

Original entry on oeis.org

1, 31, 59, 94, 104, 122, 133, 181, 206, 223, 244, 248, 283, 298, 318, 342, 356, 401, 406, 421, 422, 439, 444, 449, 451, 469, 479, 493, 496, 507, 528, 532, 536, 541, 555, 597, 631, 637, 643, 668, 701, 706, 712, 717, 721, 722, 754, 762, 795, 797, 801, 815, 842
Offset: 1

Views

Author

Alexander Adamchuk, Oct 18 2009

Keywords

Examples

			a(2) = A125314(4) = 31.
		

Crossrefs

Programs

  • Mathematica
    k = s = 1; p = 1; lst = {}; While[k < 1000, If[ Mod[p, s] == 0, AppendTo[lst, k]]; k++; s = s + k^4; p = p*k^4]; lst (* Robert G. Wilson v, Nov 02 2009 *)
    Module[{nn=1000,c},c=Range[nn]^4;Select[Range[nn],Divisible[Times@@ Take[ c,#], Total[Take[c,#]]]&]] (* Harvey P. Dale, Dec 18 2013 *)

Extensions

a(15)-a(53) from Robert G. Wilson v, Nov 02 2009

A181426 Numerator of Sum_{k=1..n} k^4 / Product_{k=1..n} k^4.

Original entry on oeis.org

1, 17, 49, 59, 979, 91, 167, 731, 5111, 517, 1817, 6071, 109, 18241, 22289, 2771, 131, 28823, 67, 51619, 11911, 34891, 15557, 257, 1949, 22313, 2267, 14123, 153931, 5273999, 1, 3167, 45091, 3569, 268309, 126947, 4217, 127, 369641, 201679, 85739
Offset: 1

Views

Author

Alexander Adamchuk, Oct 18 2010

Keywords

Comments

a(n) = 1 for n = {1, 31, 59, 94, 104, 122, 133, 181, 206, 223, ...} = A166604.

Examples

			The first few fractions are 1, 17/16, 49/648, 59/55296, 979/207360000, 91/10749542400, 167/23044331520000, ... = A181426/A334734.
		

Crossrefs

Cf. A090585 = Numerator of Sum/Product of first n numbers.
Cf. A125294 = Numerator of Sum/Product of squares of first n numbers.
Cf. A166604, A334734 (denominators).

Programs

  • Mathematica
    Table[Numerator[Sum[ k^4, {k, 1, n}] / Product[k^4, {k, 1, n}]], {n, 1, 100}]
    With[{c=Range[50]^4},Numerator[Accumulate[c]/FoldList[Times,c]]] (* Harvey P. Dale, Jul 03 2025 *)
  • PARI
    a(n) = numerator(sum(k=1, n, k^4)/prod(k=1, n, k^4)); \\ Michel Marcus, May 09 2020
Showing 1-2 of 2 results.