cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334773 Array read by antidiagonals: T(n,k) is the number of permutations of k indistinguishable copies of 1..n with exactly 2 local maxima.

Original entry on oeis.org

3, 12, 57, 30, 360, 705, 60, 1400, 7968, 7617, 105, 4170, 51750, 163584, 78357, 168, 10437, 241080, 1830000, 3293184, 791589, 252, 23072, 894201, 13562040, 64168750, 65968128, 7944321, 360, 46440, 2804480, 75278553, 759940800, 2246625000, 1319854080, 79541625
Offset: 2

Views

Author

Andrew Howroyd, May 10 2020

Keywords

Examples

			Array begins:
======================================================
n\k |       2          3           4              5
----|-------------------------------------------------
  2 |       3         12          30            60 ...
  3 |      57        360        1400          4170 ...
  4 |     705       7968       51750        241080 ...
  5 |    7617     163584     1830000      13562040 ...
  6 |   78357    3293184    64168750     759940800 ...
  7 |  791589   65968128  2246625000   42560067360 ...
  8 | 7944321 1319854080 78636093750 2383387566720 ...
  ...
The T(2,2) = 3 permutations of 1122 with 2 local maxima are 1212, 2112, 2121.
		

Crossrefs

Columns k=2..8 are 3*A152494, 12*A152499, 10*A152504, 30*A152509, 21*A152513, 56*A152517, 36*A152518.

Programs

  • PARI
    T(n,k) = {3*((k^2 + 4*k + 1)*binomial(k+3,3)^(n-1) - (2*k^2 + 9*k + 1)*(k+1)^(n-1) - k*(k + 5)*(n-2)*(k+1)^(n-1))/(k + 5)^2}

Formula

T(n,k) = Sum_{j=0..n-2} P(k-1,3) * P(k-2,2) * P(k,2)^(n-2-j) * P(k,4)^j + 2 * (n-j-2) * P(k-1,3)^2 * P(k,2)^(n-3-j) * P(k,4)^j where P(n,k) = binomial(n+k-1,k-1).
T(n,k) = 3*((k^2 + 4*k + 1)*binomial(k+3,3)^(n-1) - (2*k^2 + 9*k + 1)*(k+1)^(n-1) - k*(k + 5)*(n-2)*(k+1)^(n-1))/(k + 5)^2.