cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A334783 a(n) = Sum_{d|n} lcm(d, sigma(d)).

Original entry on oeis.org

1, 7, 13, 35, 31, 31, 57, 155, 130, 127, 133, 143, 183, 231, 163, 651, 307, 382, 381, 575, 741, 535, 553, 383, 806, 735, 1210, 315, 871, 631, 993, 2667, 673, 1231, 1767, 3770, 1407, 1527, 2379, 1055, 1723, 1599, 1893, 1487, 1450, 2215, 2257, 2367, 2850, 5552
Offset: 1

Views

Author

Jaroslav Krizek, May 10 2020

Keywords

Examples

			a(6) = lcm(1, sigma(1)) + lcm(2, sigma(2)) + lcm(3, sigma(3)) + lcm(6, sigma(6)) = lcm(1, 1) + lcm(2, 3) + lcm(3, 4) + lcm(6, 12) = 1 + 6 + 12 + 12 = 31.
		

Crossrefs

Cf. A334490 (Sum_{d|n} gcd(d, sigma(d))), A334782 (Sum_{d|n} lcm(d, tau(d))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A009242 (lcm(n, sigma(n))).

Programs

  • Magma
    [&+[LCM(d, &+Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N):
    for d from 1 to N do
      t:= ilcm(d,numtheory:-sigma(d));
      R:= [seq(i,i=d..N,d)];
      V[R]:= V[R] +~ t;
    od:
    convert(V,list); # Robert Israel, May 13 2020
  • Mathematica
    a[n_] := DivisorSum[n, LCM[#, DivisorSigma[1, #]] &]; Array[a, 100] (* Amiram Eldar, May 10 2020 *)
  • PARI
    a(n) = sumdiv(n, d, lcm(d, sigma(d))); \\ Michel Marcus, May 10 2020

Formula

a(p) = p^2 + p + 1 for p = primes (A000040).

A334795 a(n) = Product_{d|n} lcm(d, tau(d)) where tau(k) is the number of divisors of k (A000005).

Original entry on oeis.org

1, 2, 6, 24, 10, 144, 14, 192, 54, 400, 22, 20736, 26, 784, 3600, 15360, 34, 23328, 38, 288000, 7056, 1936, 46, 3981312, 750, 2704, 5832, 790272, 58, 207360000, 62, 1474560, 17424, 4624, 19600, 120932352, 74, 5776, 24336, 92160000, 82, 796594176, 86, 3066624
Offset: 1

Views

Author

Jaroslav Krizek, May 12 2020

Keywords

Comments

From Robert Israel, Jun 25 2020: (Start)
If p is an odd prime, a(p) = 2*p.
If p is a prime > 3, a(p^2) = 6*p^3.
If p and q are distinct odd primes, a(p*q) = 16*p^2*q^2. (End)

Examples

			a(6) = lcm(1, tau(1)) * lcm(2, tau(2)) * lcm(3, tau(3)) * lcm(6, tau(6)) = lcm(1, 1) * lcm(2, 2) * lcm(3, 2) * lcm(6, 4) = 1 * 2 * 6 * 12 = 144.
		

Crossrefs

Cf. A334782 (Sum_{d|n} lcm(d, tau(d))), A334664 (Product_{d|n} gcd(d, tau(d))).
Cf. A000005 (tau(n)), A009230 (lcm(n, tau(n))).

Programs

  • Magma
    [&*[LCM(d, #Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Maple
    g:= d -> ilcm(d, numtheory:-tau(d)):
    f:= n -> mul(g(d), d = numtheory:-divisors(n)):
    map(f, [$1..100]); # Robert Israel, Jun 25 2020
  • Mathematica
    a[n_] := Product[LCM[d, DivisorSigma[0, d]], {d, Divisors[n]}]; Array[a, 100] (* Amiram Eldar, May 12 2020 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, lcm(d[k], numdiv(d[k]))); \\ Michel Marcus, May 12 2020

Formula

a(p) = 2p for p = odd primes (A065091).
Showing 1-2 of 2 results.