A334981 Numbers k such that the numerator of the k-th alternating harmonic number H'(k) is divisible by the square of a prime less than k.
30, 241, 1057, 1499, 10499, 318425
Offset: 1
Links
- David W. Boyd, A p-adic study of the partial sum of the harmonic series, Experimental Mathematics, 3(4) (1994), 287-302.
- Christian Krattenthaler and Tanguy Rivoal, On the integrality of the Taylor coefficients of mirror maps, arXiv:0709.1432 [math.NT], 2007-2009.
- Christian Krattenthaler and Tanguy Rivoal, On the integrality of the Taylor coefficients of mirror maps, II, Communications in Number Theory and Physics, Volume 3, Number 3 (2009), 555-591.
- Tamás Lengyel, On p-adic properties of the Stirling numbers of the first kind, Journal of Number Theory, 148 (2015), 73-94.
Programs
-
PARI
ah(n) = sum(i=1, n, (-1)^(i+1)/i); is(n) = {forprime(p=1, n-1, if(valuation((numerator(ah(n))), p) > 1, return(1))); return(0)}
-
PARI
listaa(nn) = {my(h=0,s=1,nh); for (n=1, nn, h += s/n; nh = numerator(h); forprime(p=1, n-1, if(valuation(nh, p) > 1, print1(n, ", "); break)); s = -s;);} \\ Michel Marcus, May 26 2020
Extensions
a(5) from Michel Marcus, May 26 2020
a(6) from Giovanni Resta, May 26 2020
Comments