cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334988 Sum of tetrahedral numbers dividing n.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 1, 5, 1, 1, 1, 35, 1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 36, 5, 1, 1, 1, 35, 1, 1, 1, 5, 1, 1, 1, 5, 1, 11, 1, 5, 1, 1, 1, 61, 1, 1, 1, 35, 1, 1, 1, 5, 1, 1, 1, 5, 1, 46, 1, 5, 1, 1, 1, 5, 1, 1, 1, 35, 1, 1, 1, 89, 1, 1, 1, 5, 1, 11
Offset: 1

Views

Author

Ilya Gutkovskiy, May 18 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[Binomial[k + 2, 3] x^Binomial[k + 2, 3]/(1 - x^Binomial[k + 2, 3]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    nmax = 90; CoefficientList[Series[Log[Product[1/(1 - x^Binomial[k + 2, 3]), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest
  • PARI
    ist(n) = my(k=sqrtnint(6*n, 3)); k*(k+1)*(k+2)==6*n; \\ A000292
    a(n) = sumdiv(n, d, if (ist(d), d)); \\ Michel Marcus, May 19 2020

Formula

G.f.: Sum_{k>=1} binomial(k+2,3) * x^binomial(k+2,3) / (1 - x^binomial(k+2,3)).
L.g.f.: log(G(x)), where G(x) is the g.f. for A068980.
a(n) = Sum_{d|n} A023533(d) * d.