A334996 Irregular triangle read by rows: T(n, m) is the number of ways to distribute Omega(n) objects into precisely m distinct boxes, with no box empty (Omega(n) >= m).
0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 1, 0, 1, 2, 0, 1, 0, 1, 4, 3, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 3, 3, 1, 0, 1, 0, 1, 4, 3, 0, 1, 0, 1, 4, 3, 0, 1, 2, 0, 1, 2, 0, 1, 0, 1, 6, 9, 4, 0, 1, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 4, 3, 0, 1, 0, 1, 6, 6
Offset: 1
Examples
The triangle T(n, m) begins n\m| 0 1 2 3 4 ---+-------------------------- 1 | 0 2 | 0 1 3 | 0 1 4 | 0 1 1 5 | 0 1 6 | 0 1 2 7 | 0 1 8 | 0 1 2 1 9 | 0 1 1 10 | 0 1 2 11 | 0 1 12 | 0 1 4 3 13 | 0 1 14 | 0 1 2 15 | 0 1 2 16 | 0 1 3 3 1 ... From _Gus Wiseman_, Aug 25 2020: (Start) Row n = 36 counts the following distributions of {1,1,2,2} (the first column is empty): {1122} {1}{122} {1}{1}{22} {1}{1}{2}{2} {11}{22} {1}{12}{2} {1}{2}{1}{2} {112}{2} {11}{2}{2} {1}{2}{2}{1} {12}{12} {1}{2}{12} {2}{1}{1}{2} {122}{1} {12}{1}{2} {2}{1}{2}{1} {2}{112} {1}{22}{1} {2}{2}{1}{1} {22}{11} {12}{2}{1} {2}{1}{12} {2}{11}{2} {2}{12}{1} {2}{2}{11} {22}{1}{1} (End)
References
- Richard Beekman, An Introduction to Number-Theoretic Combinatorics, Lulu Press 2017.
Links
- Stefano Spezia, First 3000 rows of the table, flattened
- Richard Beekman, A General Solution of the Ferris Wheel Problem.
Crossrefs
Cf. A000007 (1st column), A000012 (2nd column), A001222 (Omega function), A002033 (row sums shifted left), A007318.
A008480 gives rows ends.
A073093 gives row lengths.
A074206 gives row sums.
A112798 constructs the multiset with each specification number.
A124433 is a signed version.
A251683 is the version with zeros removed.
A334997 is the non-strict version.
A337107 is the restriction to factorial numbers.
A001055 counts factorizations.
A067824 counts strict chains of divisors starting with n.
A122651 counts strict chains of divisors summing to n.
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts strict chains of divisors.
A337105 counts strict chains of divisors from n! to 1.
Programs
-
Mathematica
tau[n_,k_]:=If[n==1,1,Product[Binomial[Extract[Extract[FactorInteger[n],i],2]+k,k],{i,1,Length[FactorInteger[n]]}]]; (* A334997 *) T[n_,m_]:=Sum[(-1)^k*Binomial[m,k]*tau[n,m-k-1],{k,0,m-1}]; Table[T[n,m],{n,1,30},{m,0,PrimeOmega[n]}]//Flatten (* second program *) chc[n_]:=If[n==1,{{}},Prepend[Join@@Table[Prepend[#,n]&/@chc[d],{d,DeleteCases[Divisors[n],1|n]}],{n}]]; (* change {{}} to {} if a(1) = 0 *) Table[Length[Select[chc[n],Length[#]==k&]],{n,30},{k,0,PrimeOmega[n]}] (* Gus Wiseman, Aug 25 2020 *)
-
PARI
TT(n, k) = if (k==0, 1, sumdiv(n, d, TT(d, k-1))); \\ A334997 T(n, m) = sum(k=0, m-1, (-1)^k*binomial(m, k)*TT(n, m-k-1)); tabf(nn) = {for (n=1, nn, print(vector(bigomega(n)+1, k, T(n, k-1))););} \\ Michel Marcus, May 20 2020
Formula
T(n, m) = Sum_{k=0..m-1} (-1)^k*binomial(m,k)*tau_{m-k-1}(n), where tau_s(r) = A334997(r, s) (see Theorem 3, Lemma 1 and Lemma 2 in Beekman's article).
Conjecture: Sum_{m=0..Omega(n)} T(n, m) = A002033(n-1) for n > 1.
The above conjecture is true since T(n, m) is also the number of ordered factorizations of n into m factors (see Comments) and A002033(n-1) is the number of ordered factorizations of n. - Stefano Spezia, Aug 21 2025
Comments