cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335024 Ratios of consecutive terms of A056612.

Original entry on oeis.org

1, 1, 2, 1, 18, 1, 4, 1, 10, 1, 12, 1, 14, 15, 8, 1, 54, 1, 100, 63, 22, 1, 8, 1, 26, 3, 28, 1, 30, 1, 16, 363, 34, 35, 36, 1, 38, 39, 40, 1, 294, 1, 4, 45, 46, 1, 48, 1, 50, 51, 52, 1, 162, 55, 56, 57, 58, 1, 60, 1, 62, 189, 32, 65, 198, 1, 68, 23, 70, 1, 24, 1, 74, 75, 76, 847, 78, 1, 80
Offset: 1

Views

Author

Petros Hadjicostas, May 19 2020

Keywords

Comments

Conjecture 1: a(n) = 1 if and only if n + 1 = p^k for some prime p and some positive integer k < p.
Conjecture 2 (due to Alois P. Heinz): a(n) = 1 <=> n+1 in A136327.

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= (1/n +`if`(n=1, 0, b(n-1))) end:
    g:= proc(n) g(n):= (f-> igcd(b(n)*f, f))(n!) end:
    a:= n-> g(n+1)/g(n):
    seq(a(n), n=1..80);  # Alois P. Heinz, May 20 2020
  • Mathematica
    g[n_] := GCD[n!, n! Sum[1/k, {k, 1, n}]];
    a[n_] := g[n + 1]/g[n];
    Array[a, 80] (* Jean-François Alcover, Dec 01 2020, after PARI *)
  • PARI
    g(n) = gcd(n!, n!*sum(k=1, n, 1/k)); \\ A056612
    a(n) = g(n+1)/g(n); \\ Michel Marcus, May 20 2020

Formula

a(n) = A056612(n+1)/A056612(n).