A335024 Ratios of consecutive terms of A056612.
1, 1, 2, 1, 18, 1, 4, 1, 10, 1, 12, 1, 14, 15, 8, 1, 54, 1, 100, 63, 22, 1, 8, 1, 26, 3, 28, 1, 30, 1, 16, 363, 34, 35, 36, 1, 38, 39, 40, 1, 294, 1, 4, 45, 46, 1, 48, 1, 50, 51, 52, 1, 162, 55, 56, 57, 58, 1, 60, 1, 62, 189, 32, 65, 198, 1, 68, 23, 70, 1, 24, 1, 74, 75, 76, 847, 78, 1, 80
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Programs
-
Maple
b:= proc(n) b(n):= (1/n +`if`(n=1, 0, b(n-1))) end: g:= proc(n) g(n):= (f-> igcd(b(n)*f, f))(n!) end: a:= n-> g(n+1)/g(n): seq(a(n), n=1..80); # Alois P. Heinz, May 20 2020
-
Mathematica
g[n_] := GCD[n!, n! Sum[1/k, {k, 1, n}]]; a[n_] := g[n + 1]/g[n]; Array[a, 80] (* Jean-François Alcover, Dec 01 2020, after PARI *)
-
PARI
g(n) = gcd(n!, n!*sum(k=1, n, 1/k)); \\ A056612 a(n) = g(n+1)/g(n); \\ Michel Marcus, May 20 2020
Comments