cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335078 Irregular triangle read by rows: T(n, k) is the number of rotationally inequivalent Ferris Wheel distributions of Omega(n) colored balls of specification number n into precisely k boxes of the Ferris Wheel, with no box empty (0 < k <= Omega(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 2, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 3, 2, 1
Offset: 2

Views

Author

Stefano Spezia, May 23 2020

Keywords

Examples

			The triangle T(n, k) begins
  n\k| 1     2     2     4
  ---+--------------------
   2 | 1
   3 | 1
   4 | 1     1
   5 | 1
   6 | 1     1
   7 | 1
   8 | 1     1     1
   9 | 1     1
  10 | 1     1
  11 | 1
  12 | 1     2     1
  13 | 1
  14 | 1     1
  15 | 1     1
  16 | 1     2     1     1
  ...
		

References

  • Richard Beekman, An Introduction to Number-Theoretic Combinatorics, Lulu Press 2017.

Crossrefs

Cf. A000012 (1st column), A001222 (Omega), A334996, A334997, A335079 (row sums).

Programs

  • Mathematica
    tau[n_,k_]:=If[n==1,1,Product[Binomial[Extract[Extract[FactorInteger[n],i],2]+k,k],{i,Length[FactorInteger[n]]}]]; (* A334997 *)
    Nd[n_, m_]:=Sum[(-1)^k*Binomial[m, k]*tau[n, m-k-1], {k,0,m-1}]; (* A334996 *)
    T[n_,k_]:=1/k*DivisorSum[k,EulerPhi[#]*Nd[n^(1/#),k/#]&,IntegerQ[n^(1/#)]&];  Table[T[n, m], {n,2,43}, {m,PrimeOmega[n]}]//Flatten
  • PARI
    TT(n, k) = if (k==0, 1, sumdiv(n, d, TT(d, k-1))); \\ A334996
    U(n, m) = sum(k=0, m-1, (-1)^k*binomial(m, k)*TT(n, m-k-1));
    T(n, k) = my(p); (1/k)*sumdiv(k, d, if (ispower(n, d, &p), eulerphi(d)*U(p, k/d)));
    row(n) = vector(bigomega(n), k, T(n,k)); \\ Michel Marcus, May 25 2020

Formula

T(n, k) = (1/k)*Sum_{d divides k and n^(1/d) is a positive integer} phi(d)*A334996(n^(1/d), k/d) (see Theorem 4 in Beekman's article).