A335143 Nonunitary Zumkeller numbers (A335142) whose set of nonunitary divisors can be partitioned into two disjoint sets of equal sum in a single way.
24, 48, 54, 80, 112, 150, 224, 280, 294, 352, 416, 630, 704, 726, 832, 1014, 1088, 1216, 1472, 1734, 1750, 1856, 1984, 2166, 2475, 2944, 3174, 3344, 3430, 3712, 3968, 4275, 4736, 5046, 5248, 5504, 5766, 6016, 6784, 7552, 7808, 8214, 8470, 10086, 11008, 11094
Offset: 1
Keywords
Examples
24 is a term since there is only one partition of its set of nonunitary divisors, {2, 4, 6, 12}, into two disjoint sets of equal sum: {2, 4, 6} and {12}.
Programs
-
Mathematica
nuzQ[n_] := Module[{d = Select[Divisors[n], GCD[#, n/#] > 1 &], sum, x}, sum = Plus @@ d; sum > 0 && EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] == 2]; Select[Range[12000], nuzQ]
Comments