A335207 Numbers L such that there is a prime p <= L for which v_p(H_L - 1) > 1, where v_p(x) is the p-adic valuation of x and H_L is the L-th harmonic number.
43, 2034, 2069, 9702, 9712, 67258, 102691, 102727, 147253, 904332
Offset: 1
Links
- Christian Krattenthaler and Tanguy Rivoal, On the integrality of the Taylor coefficients of mirror maps, arXiv:0709.1432 [math.NT], 2007-2009.
- Christian Krattenthaler and Tanguy Rivoal, Supplement 2 to the paper "On the integrality of the Taylor coefficients of mirror maps", 2007-2009. [This table contains all triplets of numbers (L, p, v_p(H_L - 1)) such that 1 <= L <= 10^6, p prime <= L, and v_p(H_L - 1) > 0.]
- Christian Krattenthaler and Tanguy Rivoal, On the integrality of the Taylor coefficients of mirror maps, II, Communications in Number Theory and Physics, Volume 3, Number 3 (2009), 555-591.
Programs
-
Maple
A335207_list := proc(bound) local p, h, H, L, n; L := NULL; h := 0; for n from 1 to bound do h := h + 1/n; H := h - 1; p:= 2; while p <= n do if padic:-ordp(H, p) <= 1 then p := nextprime(p); else L := L, n; break; fi od; od; L end: A335207_list(2222); # Peter Luschny, May 29 2020
-
PARI
list(nn) = {my(h=-1); for (n=1, nn, h += 1/n; forprime(p=1, n-1, if(valuation(h, p) > 1, print1(n, ", "); break)););} \\ Petros Hadjicostas, May 26 2020, courtesy of Michel Marcus
Comments