cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A336563 Sum of proper divisors of n that are divisible by every prime that divides n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 6, 3, 0, 0, 6, 0, 0, 0, 14, 0, 6, 0, 10, 0, 0, 0, 18, 5, 0, 12, 14, 0, 0, 0, 30, 0, 0, 0, 36, 0, 0, 0, 30, 0, 0, 0, 22, 15, 0, 0, 42, 7, 10, 0, 26, 0, 24, 0, 42, 0, 0, 0, 30, 0, 0, 21, 62, 0, 0, 0, 34, 0, 0, 0, 96, 0, 0, 15, 38, 0, 0, 0, 70, 39, 0, 0, 42, 0, 0, 0, 66, 0, 30, 0, 46, 0, 0, 0, 90
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - n; Array[a, 100] (* Amiram Eldar, May 06 2023 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A057723(n) = { my(r=A007947(n)); (r*sigma(n/r)); };
    A336563(n) = (A057723(n)-n);
    \\ Or just as:
    A336563(n) = { my(x=A007947(n),y = n/x); (x*(sigma(y)-y)); };

Formula

a(n) = A057723(n) - n.
a(n) = A007947(n) * A336567(n) = A007947(n) * A001065(A003557(n)).
a(n) = A336564(n) - A033879(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A065487 - 1 = 0.231291... . - Amiram Eldar, Dec 07 2023

A336649 Sum of divisors of A336651(n) (odd part of n divided by its largest squarefree divisor).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 6, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 8, 6, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 6, 1, 1, 1, 1, 1, 40, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 8, 4, 6, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2020

Keywords

Crossrefs

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := (p^e - 1)/(p-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
  • PARI
    A336649(n) = { my(f=factor(n)); prod(i=1, #f~, if((2==f[i,1])||(1==f[i,2]),1,(((f[i,1]^(f[i,2]))-1) / (f[i,1]-1)))); };
    
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A335341(n) = if(1==n,n,sigma(n/factorback(factorint(n)[, 1])));
    A336649(n) = A335341(A000265(n));

Formula

Multiplicative with a(2^e) = 1, a(p^1) = 1 and a(p^e) = (p^e - 1)/(p-1) if e > 1.
a(n) = A000203(A336651(n)) = A335341(A000265(n)).
a(n) = A336652(n) / A204455(n).
Dirichlet g.f.: zeta(s-1) * zeta(s) * (1 - 1/(1-2^s+2^(2*s-1))) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^(2*s-1)). - Amiram Eldar, Dec 18 2023

A336567 Sum of proper divisors of {n divided by its largest squarefree divisor}.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 1, 0, 0, 0, 7, 0, 1, 0, 1, 0, 0, 0, 3, 1, 0, 4, 1, 0, 0, 0, 15, 0, 0, 0, 6, 0, 0, 0, 3, 0, 0, 0, 1, 1, 0, 0, 7, 1, 1, 0, 1, 0, 4, 0, 3, 0, 0, 0, 1, 0, 0, 1, 31, 0, 0, 0, 1, 0, 0, 0, 16, 0, 0, 1, 1, 0, 0, 0, 7, 13, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 15, 0, 1, 1, 8, 0, 0, 0, 3, 0
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2020

Keywords

Crossrefs

Programs

Formula

a(n) = A001065(A003557(n)).
a(n) = A335341(n) - A003557(n) = A336563(n) / A007947(n).

A376216 Numbers whose sum of powerful divisors (including 1) is even.

Original entry on oeis.org

9, 18, 25, 36, 45, 49, 50, 63, 72, 75, 81, 90, 98, 99, 100, 117, 121, 126, 144, 147, 150, 153, 162, 169, 171, 175, 180, 196, 198, 200, 207, 225, 234, 242, 245, 252, 261, 275, 279, 288, 289, 294, 300, 306, 315, 324, 325, 333, 338, 342, 350, 360, 361, 363, 369, 387, 392, 396, 400
Offset: 1

Views

Author

Amiram Eldar, Sep 15 2024

Keywords

Comments

The sequence of numbers whose number of powerful divisors (including 1, A005361) is even is A072587, which is the sequence of numbers that are not exponentially odd (A268335).
The primitive terms of this sequence are the powerful terms (A376217). If m is a powerful term then k*m is a term of this sequence for all squarefree numbers k that are coprime to m.
Numbers that have at least one odd prime factor in their prime factorization that has an even exponent.
Numbers whose odd part (A000265) is not an exponentially odd number (A268335).
Also, numbers k such that A335341(k) is even.
The asymptotic density of this sequence is 1 - (6/5) * A065463 = 0.15466935880100128871... .

Crossrefs

Subsequence of A013929.

Programs

  • Mathematica
    q[n_] := Module[{f = Select[FactorInteger[n], First[#] == 2 || Last[#] > 1 &], i = 2 - Mod[n, 2]}, Length[f] > 0 && AnyTrue[f[[i;;-1, 2]], EvenQ]]; Select[Range[400], q]
  • PARI
    is(k) = {my(f = factor(k), i = 1 + !(k % 2)); #select(x -> !(x%2), f[i..#f~,2]) > 0;}

A383717 Dirichlet g.f.: Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-1)).

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 0, 3, 10, 11, 6, 13, 14, 15, 0, 17, 6, 19, 10, 21, 22, 23, 0, 5, 26, 0, 14, 29, 30, 31, 0, 33, 34, 35, 6, 37, 38, 39, 0, 41, 42, 43, 22, 15, 46, 47, 0, 7, 10, 51, 26, 53, 0, 55, 0, 57, 58, 59, 30, 61, 62, 21, 0, 65, 66, 67, 34, 69, 70, 71, 0, 73
Offset: 1

Views

Author

Vaclav Kotesovec, May 07 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e < 3, p, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 07 2025 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X*p + X^2*p))[n], ", "))

Formula

Sum_{k=1..n} a(k) ~ c * n^2/2, where c = Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.684286924186862318141968725791218083472312736723163777284618226290055...
Multiplicative with a(p^e) = p is e <= 2, and 0 otherwise. - Amiram Eldar, May 07 2025
Showing 1-5 of 5 results.