cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A336563 Sum of proper divisors of n that are divisible by every prime that divides n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 6, 3, 0, 0, 6, 0, 0, 0, 14, 0, 6, 0, 10, 0, 0, 0, 18, 5, 0, 12, 14, 0, 0, 0, 30, 0, 0, 0, 36, 0, 0, 0, 30, 0, 0, 0, 22, 15, 0, 0, 42, 7, 10, 0, 26, 0, 24, 0, 42, 0, 0, 0, 30, 0, 0, 21, 62, 0, 0, 0, 34, 0, 0, 0, 96, 0, 0, 15, 38, 0, 0, 0, 70, 39, 0, 0, 42, 0, 0, 0, 66, 0, 30, 0, 46, 0, 0, 0, 90
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - n; Array[a, 100] (* Amiram Eldar, May 06 2023 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A057723(n) = { my(r=A007947(n)); (r*sigma(n/r)); };
    A336563(n) = (A057723(n)-n);
    \\ Or just as:
    A336563(n) = { my(x=A007947(n),y = n/x); (x*(sigma(y)-y)); };

Formula

a(n) = A057723(n) - n.
a(n) = A007947(n) * A336567(n) = A007947(n) * A001065(A003557(n)).
a(n) = A336564(n) - A033879(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A065487 - 1 = 0.231291... . - Amiram Eldar, Dec 07 2023

A335341 Sum of divisors of A003557(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 7, 4, 1, 1, 3, 1, 1, 1, 15, 1, 4, 1, 3, 1, 1, 1, 7, 6, 1, 13, 3, 1, 1, 1, 31, 1, 1, 1, 12, 1, 1, 1, 7, 1, 1, 1, 3, 4, 1, 1, 15, 8, 6, 1, 3, 1, 13, 1, 7, 1, 1, 1, 3, 1, 1, 4, 63, 1, 1, 1, 3, 1, 1, 1, 28, 1, 1, 6, 3, 1, 1, 1
Offset: 1

Views

Author

R. J. Mathar, Jun 02 2020

Keywords

Comments

The sum of the divisors d of n such that n/d is a coreful divisor of n (a coreful divisor of n is a divisor with the same squarefree kernel as n). The number of these divisors is A005361(n). - Amiram Eldar, Jun 30 2023

Crossrefs

Cf. A000203, A003557, A005361 (number of divisors of A003557), A336567.

Programs

  • Maple
    A335341 := proc(n)
        local a,pe,p,e ;
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            if e > 1 then
                a := a*(p^e-1)/(p-1) ;
            end if;
        end do:
        a ;
    end proc:
  • Mathematica
    f[p_, e_] := (p^e-1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 26 2020 *)
  • PARI
    a(n) = sigma(n/factorback(factor(n)[, 1])); \\ Michel Marcus, Jun 02 2020

Formula

a(n) = A000203(A003557(n)).
Multiplicative with a(p^1)=1 and a(p^e) = (p^e-1)/(p-1) if e>1.
A057723(n) = A007947(n)*a(n).
a(n) = 1 iff n in A005117.
a(n) = A336567(n) + A003557(n). - Antti Karttunen, Jul 28 2020
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^(2*s-1)). - Amiram Eldar, Sep 09 2023
a(n) = A047994(n)/A173557(n). - Ridouane Oudra, Oct 30 2023
Showing 1-2 of 2 results.