A335410 Primes prime(k) such that 2*(prime(k)^2 - prime(k-1)^2) is a perfect square.
11, 19, 73, 83, 227, 443, 883, 1091, 1153, 1931, 2593, 2609, 3529, 4051, 7451, 13691, 15139, 16649, 20809, 26921, 34849, 45377, 46819, 53147, 56171, 69193, 74507, 74531, 83233, 91811, 95483, 103067, 103969, 106937, 110459, 112339, 149059, 149771, 176419, 180001
Offset: 1
Keywords
Examples
Prime(5) = 11, prime(4) = 7, 2*(11^2 - 7^2) = 12^2, so 11 is in the sequence. Prime(559) = 4051, prime(558) = 4049, 2*(4051^2 - 4049^2) = 180^2, so 4051 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Prime@ Range[2, 17000], IntegerQ@ Sqrt[2 (#^2 - NextPrime[#, -1]^2)] &] (* Giovanni Resta, Jun 06 2020 *)
-
PARI
lista(nn) = {my(pp=2); forprime (p=3, nn, if (issquare(2*(p^2 - pp^2)), print1(p, ", ")); pp = p;);} \\ Michel Marcus, Jun 25 2020
Extensions
More terms from Giovanni Resta, Jun 06 2020
Comments