cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A335560 Number of ways to tile an n X n square with 1 X 1 squares and (n-1) X 1 vertical or horizontal strips.

Original entry on oeis.org

1, 16, 131, 335, 851, 2207, 5891, 16175, 45491, 130367, 378851, 1112015, 3286931, 9762527, 29091011, 86879855, 259853171, 777986687, 2330814371, 6986151695, 20945872211, 62812450847, 188387020931, 565060399535, 1694979872051, 5084536963007, 15252805582691
Offset: 1

Views

Author

Oluwatobi Jemima Alabi, Jun 14 2020

Keywords

Comments

It is assumed that 1 X 1 squares and 1 X 1 strips can be distinguished. - Alois P. Heinz, Feb 23 2022

Examples

			Here is one of the 131 ways to tile a 3 X 3 square, in this case using two horizontal and two vertical strips:
   _ _ _
  |_ _| |
  | |_|_|
  |_|_ _|
		

Crossrefs

Cf. A063443 and A211348 (tiling an n X n square with smaller squares).
Cf. A028420 (tiling an n X n square with monomers and dimers).

Programs

  • Mathematica
    Join[{1, 16}, LinearRecurrence[{6, -11, 6}, {131, 335, 851}, 25]] (* Amiram Eldar, Jun 16 2020 *)
  • PARI
    Vec(x*(1 + 10*x + 46*x^2 - 281*x^3 + 186*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, Jun 14 2020

Formula

a(n) = 2*3^n + 12*2^n - 19, for n >= 3.
From Colin Barker, Jun 14 2020: (Start)
G.f.: x*(1 + 10*x + 46*x^2 - 281*x^3 + 186*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>5. (End)
E.g.f.: 5 - 19*exp(x) +12 *exp(2*x) + 2*exp(3*x) - 10*x - 31*x^2/2. - Stefano Spezia, Aug 25 2025