A335560 Number of ways to tile an n X n square with 1 X 1 squares and (n-1) X 1 vertical or horizontal strips.
1, 16, 131, 335, 851, 2207, 5891, 16175, 45491, 130367, 378851, 1112015, 3286931, 9762527, 29091011, 86879855, 259853171, 777986687, 2330814371, 6986151695, 20945872211, 62812450847, 188387020931, 565060399535, 1694979872051, 5084536963007, 15252805582691
Offset: 1
Examples
Here is one of the 131 ways to tile a 3 X 3 square, in this case using two horizontal and two vertical strips: _ _ _ |_ _| | | |_|_| |_|_ _|
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
Crossrefs
Programs
-
Mathematica
Join[{1, 16}, LinearRecurrence[{6, -11, 6}, {131, 335, 851}, 25]] (* Amiram Eldar, Jun 16 2020 *)
-
PARI
Vec(x*(1 + 10*x + 46*x^2 - 281*x^3 + 186*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, Jun 14 2020
Formula
a(n) = 2*3^n + 12*2^n - 19, for n >= 3.
From Colin Barker, Jun 14 2020: (Start)
G.f.: x*(1 + 10*x + 46*x^2 - 281*x^3 + 186*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>5. (End)
E.g.f.: 5 - 19*exp(x) +12 *exp(2*x) + 2*exp(3*x) - 10*x - 31*x^2/2. - Stefano Spezia, Aug 25 2025
Comments