A335712 The sum of the sizes of the minimal fixed points over all compositions of n.
1, 1, 2, 6, 12, 27, 54, 115, 237, 486, 997, 2030, 4122, 8350, 16881, 34054, 68609, 138052, 277500, 557328, 1118546, 2243589, 4498004, 9014053, 18058159, 36166338, 72415886, 144970116, 290170091, 580721926, 1162077483, 2325206168, 4652155420, 9307199819
Offset: 1
Keywords
Examples
Example: For n=3 the a(3)=2 values are the first 1s in 111 and 12 (the other compositions 21 and 3 do not have any fixed points).
References
- M. Archibald, A. Blecher and A. Knopfmacher, Fixed points in compositions and words, accepted by the Journal of Integer Sequences.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..500
- M. Archibald, A. Blecher, and A. Knopfmacher, Fixed Points in Compositions and Words, J. Int. Seq., Vol. 23 (2020), Article 20.11.1.
Programs
-
PARI
my(N=44,x='x+O('x^N)); Vec( sum(j=1, N, prod(i=1, j-1, (x/(1-x)-x^i) ) *j*x^j * (1-x)/(1-2*x) ) ) \\ Joerg Arndt, Jun 18 2020
Formula
G.f.: Sum_{j>=1} (Product_{i=1..j-1} (x/(1-x)-x^i)) j x^j (1-x)/(1-2x).
Extensions
a(21)-a(34) from Alois P. Heinz, Jun 18 2020