cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Margaret Archibald

Margaret Archibald's wiki page.

Margaret Archibald has authored 3 sequences.

A335714 The sum of the sizes (positions) of fixed points over all compositions of n.

Original entry on oeis.org

1, 1, 4, 8, 19, 41, 89, 189, 398, 830, 1719, 3539, 7251, 14797, 30096, 61044, 123531, 249501, 503117, 1013165, 2037986, 4095546, 8223919, 16502823, 33097639, 66349021, 132954724, 266337584, 533388643, 1067965265, 2137907009, 4279099869, 8563658486, 17136379382
Offset: 1

Author

Margaret Archibald, Jun 18 2020

Keywords

Examples

			For n=3 the a(3)=4 values are the first 1 in the composition 111 and both values in the composition 12 (the compositions 21 and 3 have no fixed points).
		

References

  • M. Archibald, A. Blecher and A. Knopfmacher, Fixed points in compositions and words, accepted by the Journal of Integer Sequences.

Crossrefs

Programs

  • PARI
    Vec((x*(1-x)^3)/((1-2*x)*(1-x-x^2)^2) + O(x^40)) \\ Michel Marcus, Jun 18 2020

Formula

G.f.: x*(1-x)^3/((1-2*x)*(1-x-x^2)^2).

Extensions

More terms from Michel Marcus, Jun 18 2020

A335713 The sum of the sizes of the largest fixed points over all compositions of n.

Original entry on oeis.org

1, 1, 3, 7, 16, 34, 73, 155, 324, 674, 1393, 2861, 5852, 11929, 24239, 49127, 99360, 200598, 404377, 814135, 1637363, 3290067, 6605980, 13255451, 26583994, 53290694, 106787166, 213919062, 428415074, 857794856, 1717201360, 3437092882, 6878672565, 13764822699
Offset: 1

Author

Margaret Archibald, Jun 18 2020

Keywords

Examples

			For n=3 the a(3)=3 values are the first 1 in the composition 111 and the 2 in the composition 12 (the compositions 21 and 3 do not have any fixed points).
		

References

  • M. Archibald, A. Blecher and A. Knopfmacher, Fixed points in compositions and words, accepted by the Journal of Integer Sequences.

Crossrefs

Formula

G.f.: Sum_{j>=1} (x/(1-x))^(j-1) j x^j Sum_{k>=j} Product_{i=j+1..k} (x/(1-x) - x^i).

Extensions

a(21)-a(34) from Alois P. Heinz, Jun 18 2020

A335712 The sum of the sizes of the minimal fixed points over all compositions of n.

Original entry on oeis.org

1, 1, 2, 6, 12, 27, 54, 115, 237, 486, 997, 2030, 4122, 8350, 16881, 34054, 68609, 138052, 277500, 557328, 1118546, 2243589, 4498004, 9014053, 18058159, 36166338, 72415886, 144970116, 290170091, 580721926, 1162077483, 2325206168, 4652155420, 9307199819
Offset: 1

Author

Margaret Archibald, Jun 18 2020

Keywords

Examples

			Example: For n=3 the a(3)=2 values are the first 1s in 111 and 12 (the other compositions 21 and 3 do not have any fixed points).
		

References

  • M. Archibald, A. Blecher and A. Knopfmacher, Fixed points in compositions and words, accepted by the Journal of Integer Sequences.

Crossrefs

Programs

  • PARI
    my(N=44,x='x+O('x^N)); Vec( sum(j=1, N, prod(i=1, j-1, (x/(1-x)-x^i) ) *j*x^j * (1-x)/(1-2*x) ) ) \\ Joerg Arndt, Jun 18 2020

Formula

G.f.: Sum_{j>=1} (Product_{i=1..j-1} (x/(1-x)-x^i)) j x^j (1-x)/(1-2x).

Extensions

a(21)-a(34) from Alois P. Heinz, Jun 18 2020