A335837 Number of normal patterns matched by integer partitions of n.
1, 2, 5, 9, 18, 31, 54, 89, 146, 228, 358, 545, 821, 1219, 1795, 2596, 3741, 5323, 7521, 10534, 14659, 20232, 27788, 37897, 51410, 69347, 93111, 124348, 165378, 218924, 288646, 379021, 495864, 646272, 839490, 1086693, 1402268, 1803786, 2313498, 2958530, 3773093
Offset: 0
Keywords
Examples
The a(0) = 1 through a(4) = 18 pairs of a partition with a matched pattern: ()/() (1)/() (2)/() (3)/() (4)/() (1)/(1) (2)/(1) (3)/(1) (4)/(1) (11)/() (21)/() (31)/() (11)/(1) (21)/(1) (31)/(1) (11)/(11) (21)/(21) (31)/(21) (111)/() (22)/() (111)/(1) (22)/(1) (111)/(11) (22)/(11) (111)/(111) (211)/() (211)/(1) (211)/(11) (211)/(21) (211)/(211) (1111)/() (1111)/(1) (1111)/(11) (1111)/(111) (1111)/(1111)
Links
- Christian Sievers, Table of n, a(n) for n = 0..2000
- Wikipedia, Permutation pattern
- Gus Wiseman, Sequences counting and ranking compositions by the patterns they match or avoid.
Crossrefs
The version for compositions in standard order is A335454.
The version for compositions is A335456.
The version for Heinz numbers of partitions is A335549.
The contiguous case is A335838.
Patterns contiguously matched by prime indices are A335516.
Contiguous divisors are counted by A335519.
Minimal patterns avoided by prime indices are counted by A335550.
Programs
-
Mathematica
mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}]; Table[Sum[Length[Union[mstype/@Subsets[y]]],{y,IntegerPartitions[n]}],{n,0,8}]
-
PARI
lista(n) = { my(v=vector(n+1,i,1+x*O(x^n))); for(k=1,n, v=vector(n\(k+1)+1,i, (1-x^(i*k))/(1-x^k)*v[i] + sum(j=i,n\k,x^(j*k)*v[j+1]) + x^(k*i)/(1-x^k)^2*v[1] ) ); Vec(v[1]) } \\ Christian Sievers, May 08 2025
Extensions
a(18) corrected by and a(19)-a(22) from Jinyuan Wang, Jun 27 2020
More terms from Christian Sievers, May 08 2025
Comments