A336041 Number of refactorable divisors of n.
1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 1, 3, 1, 4, 1, 2, 1, 2, 1, 5, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 4, 1, 2, 1, 2, 2, 2, 1, 5, 1, 2, 1, 2, 1, 4, 1, 4, 1, 2, 1, 4, 1, 2, 2, 3, 1, 2, 1, 2, 1, 2, 1, 9, 1, 2, 1, 2, 1, 2, 1, 5, 2, 2, 1, 4, 1, 2, 1, 4, 1, 4, 1, 2
Offset: 1
Examples
a(6) = 2; The divisors of 6 are {1,2,3,6}. Only two of these divisors are refactorable since d(1) = 1|1 and d(2) = 2|2, but d(3) = 2 does not divide 3 and d(6) = 4 does not divide 6. a(7) = 1; The divisors of 7 are {1,7} and d(1) = 1|1, but d(7) = 2 does not divide 7, so a(7) = 1. a(8) = 3; The divisors of 8 are {1,2,4,8}. 1, 2 and 8 are refactorable since d(1) = 1|1, d(2) = 2|2 and d(8) = 4|8 but d(4) = 3 does not divide 4, so a(8) = 3. a(9) = 2; The divisors of 9 are {1,3,9}. 1 and 9 are refactorable since d(1) = 1|1 and d(9) = 3|9 but d(3) = 2 does not divide 3. Thus, a(9) = 2.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Eric Weisstein's World of Mathematics, Refactorable Number
Crossrefs
Programs
-
Maple
A336041 := proc(n) local a ; a := 0 ; for d in numtheory[divisors](n) do if type(d/numtheory[tau](d),integer) then a := a+1 ; end if; end do: a ; end proc: seq(A336041(n),n=1..30) ; # R. J. Mathar, Nov 24 2020
-
Mathematica
a[n_] := DivisorSum[n, 1 &, Divisible[#, DivisorSigma[0, #]] &]; Array[a, 100] (* Amiram Eldar, Jul 08 2020 *)
-
PARI
a(n) = sumdiv(n, d, d%numdiv(d) == 0); \\ Michel Marcus, Jul 07 2020
Formula
a(n) = Sum_{d|n} c(d), where c(n) is the refactorable characteristic of n (A336040).
a(n) = Sum_{d|n} (1 - ceiling(d/tau(d)) + floor(d/tau(d))), where tau(n) is the number of divisors of n (A000005).
a(p) = 1 for odd primes p. - Wesley Ivan Hurt, Nov 28 2021
Comments