cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A101769 Numbers p such that p, 2p+1, 3p+2, 4p+3, 5p+4, 6p+5, 7p+6, 8p+7 are primes.

Original entry on oeis.org

2894219, 60041519, 64523969, 242024369, 407874179, 1092040949, 1092075389, 1674689729, 2281060319, 5035134509, 5329406669, 5683382879, 5792424329, 6000216809, 6380217479, 10409580719, 11488703939, 13745865209, 14181824369, 14904963149, 15002412599, 15412603919
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

From Jeppe Stig Nielsen, Jul 07 2020: (Start)
Each term is -1 modulo 210.
The subset p, 2p+1, 4p+3, 8p+7 is a Cunningham chain, cf. A023272. (End)

Crossrefs

Programs

  • Maple
    R:= NULL: count:= 0:
    for i from 0 while count < 50 do
      for j in [1049,2099, 2309] do
        p:= 2310*i+j;
        if andmap(isprime,[p, 2*p + 1, 3*p + 2, 4*p + 3, 5*p + 4, 6*p + 5, 7*p + 6, 8*p + 7]) then
          count:= count+1; R:= R,p;
        fi
    od od:
    R; # Robert Israel, May 21 2025
  • Mathematica
    a={}; Do[p=Prime[n]; If[PrimeQ[p*2+1]&&PrimeQ[p*3+2]&&PrimeQ[p*4+3]&&PrimeQ[p*5+4]&&PrimeQ[p*6+5]&&PrimeQ[p*7+6]&&PrimeQ[p*8+7], AppendTo[a, p]], {n, 1, 10^7}]; Print[a]; (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)

Extensions

a(20)-a(22) from Jeppe Stig Nielsen, Jul 07 2020

A336059 Numbers p such that p, 2p-1, 3p-2, 4p-3 are primes.

Original entry on oeis.org

331, 1531, 3061, 4261, 4951, 6841, 10831, 15391, 18121, 23011, 25411, 26041, 31771, 33301, 40111, 41491, 45061, 49831, 53881, 59341, 65851, 70141, 73771, 78541, 88741, 95461, 96931, 109471, 111721, 112621, 117721, 131311, 133201, 134731, 135301, 150151, 165901
Offset: 1

Views

Author

Jeppe Stig Nielsen, Jul 07 2020

Keywords

Comments

The subset p, 2p-1, 4p-3 is a Cunningham chain of the 2nd kind, cf. A057326.

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], AllTrue[{#, 2# - 1, 3# - 2, 4# - 3}, PrimeQ] &] (* Amiram Eldar, Jul 07 2020 *)

Formula

a(n) = A237189(n) + 1.
Showing 1-2 of 2 results.