A336070 Number of inversion sequences avoiding the vincular pattern 10-0 (or 10-1).
1, 1, 2, 6, 23, 106, 567, 3440, 23286, 173704, 1414102, 12465119, 118205428, 1199306902, 12958274048, 148502304614, 1798680392716, 22953847041950, 307774885768354, 4325220458515307, 63563589415836532, 974883257009308933, 15575374626562632462, 258780875395778033769, 4464364292401926006220
Offset: 0
Keywords
Examples
From _Joerg Arndt_, Jan 20 2024: (Start) There are a(4) = 23 weak ascent sequences (dots for zeros): 1: [ . . . . ] 2: [ . . . 1 ] 3: [ . . . 2 ] 4: [ . . . 3 ] 5: [ . . 1 . ] 6: [ . . 1 1 ] 7: [ . . 1 2 ] 8: [ . . 1 3 ] 9: [ . . 2 . ] 10: [ . . 2 1 ] 11: [ . . 2 2 ] 12: [ . . 2 3 ] 13: [ . 1 . . ] 14: [ . 1 . 1 ] 15: [ . 1 . 2 ] 16: [ . 1 1 . ] 17: [ . 1 1 1 ] 18: [ . 1 1 2 ] 19: [ . 1 1 3 ] 20: [ . 1 2 . ] 21: [ . 1 2 1 ] 22: [ . 1 2 2 ] 23: [ . 1 2 3 ] (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Juan S. Auli and Sergi Elizalde, Wilf equivalences between vincular patterns in inversion sequences, arXiv:2003.11533 [math.CO], 2020. See p. 5, Table 1. Gives terms 1-10.
- Beata Benyi, Anders Claesson, and Mark Dukes, Weak ascent sequences and related combinatorial structures, arXiv:2111.03159 [math.CO], (4-November-2021).
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, 1, add(b(n-1, j, t+`if`(j>=i, 1, 0)), j=0..t+1)) end: a:= n-> b(n, -1$2): seq(a(n), n=0..25); # Alois P. Heinz, Jan 23 2024
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Sum[b[n - 1, j, t + If[j >= i, 1, 0]], {j, 0, t + 1}]]; a[n_] := b[n, -1, -1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 18 2025, after Alois P. Heinz *)
-
PARI
\\ see formula (5) on page 18 of the Benyi/Claesson/Dukes reference N=40; M=matrix(N,N,r,c,-1); \\ memoization a(n,k)= { if ( n==0 && k==0, return(1) ); if ( k==0, return(0) ); if ( n==0, return(0) ); if ( M[n,k] != -1 , return( M[n,k] ) ); my( s ); s = sum( i=0, n, sum( j=0, k-1, (-1)^j * binomial(k-j,i) * binomial(i,j) * a( n-i, k-j-1 )) ); M[n,k] = s; return( s ); } for (n=0, N, print1( sum(k=1,n,a(n,k)),", "); ); \\ print triangle a(n,k), see A369321: \\ for (n=0, N, for(k=0,n, print1(a(n,k),", "); ); print();); \\ Joerg Arndt, Jan 20 2024
Extensions
a(0)=1 prepended and more terms from Joerg Arndt, Jan 20 2024
Comments